An overview of vertical handover decision strategies in heterogeneous wireless networks

Meriem Kassar *, Brigitte Kervella, Guy Pujolle

Computer Communications 31 (2008) 2607–2620
Outline

• Introduction
• Handover management in heterogeneous wireless networks
• Vertical handover decision
• Vertical handover decision strategies
• Our proposal
• Conclusion
Introduction

• The fourth Generation (4G) represents a heterogeneous environment with different access networks technologies

• Mobility management is the essential issue that supports the roaming of users from one system to another

• Handover management controls the change of the MT’s point of attachment during active communication
Introduction

- The vertical handover decision process answers *when* and *where* to hand over in a heterogeneous environment
 - The first choice can minimize
 - The second choice can satisfy network and user requirements
Handover management in heterogeneous wireless networks

Fig. 1. Handover management concept.
Handover management in heterogeneous wireless networks

• Handover management process
 – Handover Information Gathering
 • collect the information required to identify the need for handover
 – Handover Decision
 • whether and how to perform the handover by selecting the most suitable access network
 – Handover Execution
 • change channels conforming to the details resolved during the decision phase
Handover management in heterogeneous wireless networks

• Mobile IP
 – MN detects whether it has moved to a new access network
 – MN obtains a new temporary address, CoA (Care-of-Address) when it enters a new access network
 – Once the new tunnel is set up, the HA tunnels packets destined to the MN using the MN’s new CoA
Handover management in heterogeneous wireless networks

- Mobile IP
Vertical handover decision

- Handover decision criteria
 - Network-related: coverage, bandwidth, latency, link quality (RSS), SIR (Signal-to-Interferences Ratio), BER (Bit Error Rate), monetary cost, security level, etc.
 - Terminal-related: velocity, battery power, location information, etc.
 - User-related: user profile and preferences.
 - Service-related: service capabilities, QoS, etc.
Vertical handover decision

• Handover decision policy
 – The traditional handover decision policy is based only on RSS
 • RSS: choosing the new Base Station (BS)
 if RSS_{\text{new}} > RSS_{\text{old}}.
 • RSS with Threshold T: choosing the new BS
 if RSS_{\text{new}} > RSS_{\text{old}}$ and $RSS_{\text{old}} < T$.
 • RSS with Hysteresis H: choosing the new BS
 if RSS_{\text{new}} > RSS_{\text{old}} + H.
 • RSS, Hysteresis and Threshold: choosing the new BS
 if RSS_{\text{new}} > RSS_{\text{old}} + H and RSS_{\text{old}} < T.
Vertical handover decision strategies

• Decision function-based strategies (DF)
• User-centric strategies (UC)
• Multiple attribute decision strategies (MAD)
• Fuzzy logic and neural networks based strategies (FL/NN)
• Context-aware strategies (CA)
Vertical handover decision strategies

• Decision function-based strategies (DF)

\[f_n = \sum_s \sum_i w_{s,i} \cdot p^{n_s,i} \]

\(p^{n_s,i} \): the cost in the ith parameter to carry out service \(s \) on network \(n \).

\(w_{s,i} \): the weight (importance) assigned to using the ith parameter to perform services.
Vertical handover decision strategies

• User-centric strategies (UC)
 – user preferences, in terms of cost and QoS, is the most interesting policy parameter
Vertical handover decision strategies

• User-centric strategies (UC)
 – A. Calvagna, G. Di Modica propose a model
 • (1) the MT will never abandon GPRS connection without connection blackouts
 • (2) the algorithm searches for just WiFi access points with connection blackouts

\[C = T_{\text{WiFi}} \cdot c_{\text{WiFi}}(h) + T_{\text{GPRS}} \cdot c_{\text{GPRS}}(h) \]
Vertical handover decision strategies

- Multiple attribute decision strategies (MAD)
 - SAW (Simple Additive Weighting): the overall score of a candidate network is determined by the weighted sum of all the attribute values.

 - TOPSIS (Technique for Order Preference by Similarity to Ideal Solution): the chosen candidate network is the one which is the closest to ideal solution and the farthest from the worst case solution

 - AHP (Analytic Hierarchy Process): decomposes the network selection problem into several sub-problems and assigns a weight value for each sub-problem

 - GRA (Grey Relational Analysis) is then used to rank the candidate networks and selects the one with the highest ranking
Vertical handover decision strategies

• Fuzzy logic and neural networks based strategies (FL/NN)
 – These are combined with the multiple criteria or attribute concept in order to develop advanced decision algorithms
 – Deal with imprecise information
 – Combine and evaluate multiple criteria simultaneously
Vertical handover decision strategies

• Context-aware strategies
 – based on the knowledge of the context information of the mobile terminal and the networks
 – evaluate context changes to get decisions on whether the handover is necessary and on the best target access network
Vertical handover decision strategies

<table>
<thead>
<tr>
<th>Vertical handover decision strategy</th>
<th>Traditional (RSS-based)</th>
<th>DF</th>
<th>UC</th>
<th>MAD</th>
<th>FL/NN</th>
<th>CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-criteria</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes (FL)</td>
<td>Yes</td>
</tr>
<tr>
<td>User consideration</td>
<td>No</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Implementation complexity</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Service type supported</td>
<td>Non-real-time</td>
<td>Non-real-time and Real-time</td>
<td>Non-real-time</td>
<td>Non-real-time and real-time</td>
<td>Non-real-time and real-time</td>
<td>Non-real-time and real-time</td>
</tr>
</tbody>
</table>

DF, decision function; UC, user-centric; MAD, multiple attribute decision; FL/NN, Fuzzy Logic/Neural Networks, CA, context-aware.
Our proposal
Conclusion

• An overview of the vertical handover decision process with a classification of the different vertical handover decision strategies.

• To build a handover management solution, some issues have to be considered
 – handover control
 – information gathering
 – handover execution procedure
 – more available access networks
 – handover performance evaluation