To Repair or Not To Repair: Helping Ad Hoc Routing Protocols to Distinguish Mobility from Congestion

Manoj Pandey, Roger Pack, Lei Wang, Qiuyi Duan and Daniel Zappala
Computer Science Department
Brigham Young University
Provo, UT 8460
Outline

• Introduction
• Related Works
• Proposed Scheme
• Simulation
• Conclusion
Introduction

• One of the difficult problems in mobile ad hoc networks involves distinguishing whether frame loss at the MAC layer has occurred due to mobility or congestion.

• Unfortunately, most ad hoc routing protocols have a major design flaw in that they react to all frame loss as a sign of mobility, without any regard to congestion. (Likes AODV & DSR)

• In this paper, we solve this problem by designing Mobility Detection Algorithm, that uses MAC-layer statistics to distinguish between mobility and congestion-based losses.
Related Works

• AODV-LR

Propagation of RREQ
Propagation of RREP
Data flow
Related Works

• Dynamic Source Routing (DSR)
Related Works

- Congestion
Proposed Scheme

- **MDA (Mobility Detection Algorithm)**

```plaintext
1  credibility = threshold;
2  if transmission failure to node X then
3      if received CTS from X during attempt then
4          credibility = 0;
5      else
6          timer.set(t, X);
7          if credibility == threshold then
8              notify routing protocol node X has moved;
9      end
10  end
11 end
12 if timer for node Y expires then
13    credibility = min(threshold, credibility++);
14 end
15 if hear from any node Z then
16    if timer.isset(Z) then
17        timer.cancel(Z);
18        credibility = 0;
19    end
20 end
```
Proposed Scheme

- Proposed Scheme

Data flow

After 2 seconds (Timer Expires)

Credibility++
If credibility == threshold, notify routing protocol e has moved. (Start route repair)
Proposed Scheme

- Proposed Scheme

Data flow

If b hear from e:

Credibility = 0 and
Cancel timer for node e.
Simulation

• Simulation Environment
 – Simulator: ns-2 network simulator
 – Area: 1000m × 1000m
 – Node: 100 nodes
 – Mobility: Random Waypoint
 – Node Transmission Range: 250m
 – Simulation Time: 600 s
 – Node Speed: 20m/s
 – Pause Time: 10s
 – Simulation Result: Average of 5 rounds simulation
Simulation

- Random Scenario with ATP flows over DSR
Simulation

(b) Routing Overhead
Simulation

Throughput (Kbps)

Number of Senders

(c) Throughput
Simulation

- Random Scenario with ATP flows over AODV

(a) Correct Route Failure Decisions
Simulation

(b) Routing Overhead
Simulation

(c) Throughput
Simulation

- Mobile Random Scenario with ATP flows
Conclusion

• In this paper they have demonstrated the benefits of using Mobility Detection Algorithm to determine whether a lost frame in a wireless network is due to mobility or congestion.

• By determining when a lost frame is truly a sign of a route failure, MDA significantly reduces routing overhead and can increase throughput.

• In future work, maybe they can improve MDA to detect frames being lost due to interference from other technologies.