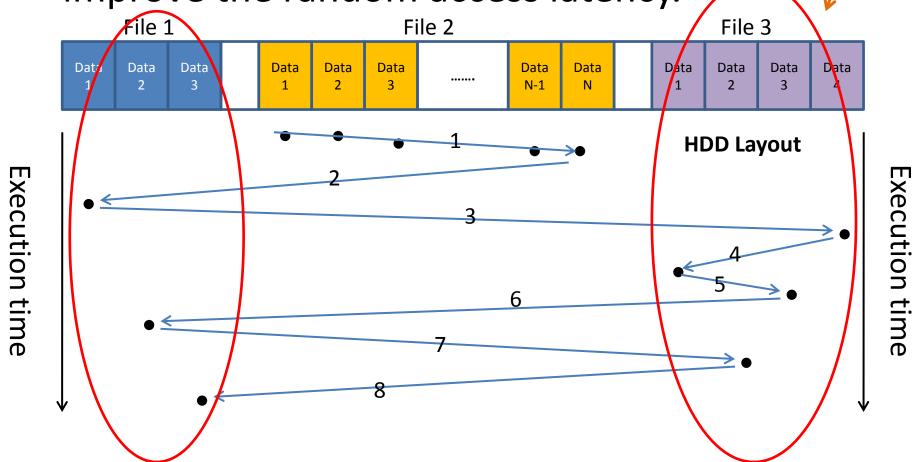
Hot Random Off-loading: A Hybrid Storage System With Dynamic Data Migration

Lin Lin, Yifeng Zhu, Jianhui Yue, Zhao Cai and Bruce Segee

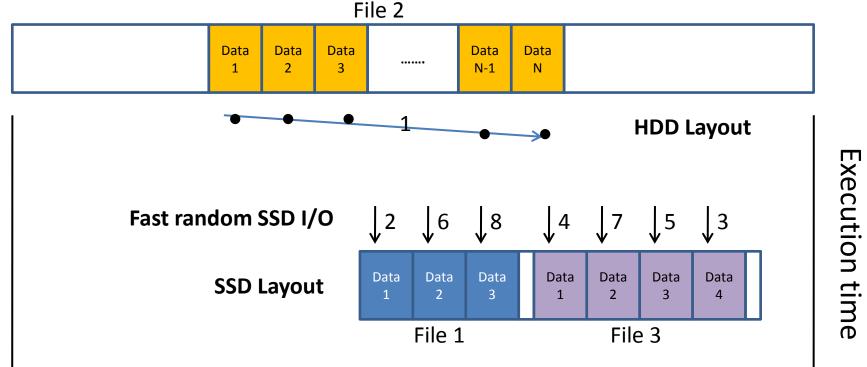
Department of Electrical and Computer Engineering, University of Maine, Orono, USA {llin, zhu, jyue, zcai, Segee}@eece.maine.edu

IN MASCOTS,2011

Outline


- Introduction
- Related work
- HRO scheme
- Evaluation
- Conclusions

 The increasingly widening speed gap between hard disks and memory systems is a major performance bottleneck.

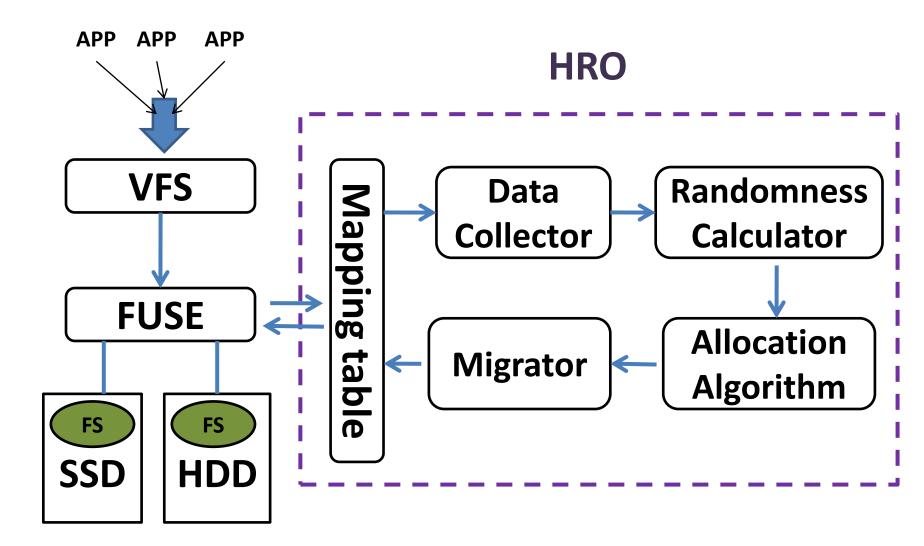

 Under random accesses, disk heads frequently move to different noncontiguous physical locations.

random access

 Many researchers have made great efforts to improve the random access latency.

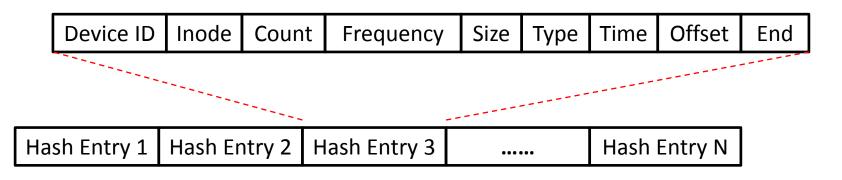
• The paper exploits solid state devices (SSDs) to address the performance issue.

Execution time


• This key advantage gives us an exciting opportunity to build a hybrid system.

 Our basic principle is to place hot and randomly accessed data on the SSD, and other data on hard disk.

Related work


- They are something difference with RAF.
 - The unit.
 - File management for SSD and HDD.

HRO Architecture

HRO scheme

• Mapping table sturcture

Field	Explanation
Device ID	File located device ID (8 bits)
Inode	File inode number in the file system (48 bits)
Count	File randomness count number (32 bits)
Size	File size (64 bits)
Frequency	File access frequency (32 bits)
Туре	File last access type (8 bits)
Time	File last access time (32 bits)
Offset	File last access offset (64 bits)
End	File last access end (64 bits)

HRO scheme

• DATA COLLECTOR captures all access requests on the system call I/O path .

- **RANDOMNESS CALCULATOR** mainly evaluates the randomness of each individual file.
 - Threshold = 0.5s

HRO scheme

• ALLOCATION ALGORITHM is specially designed to maximize the utilization of SSD in our hybrid storage systems.

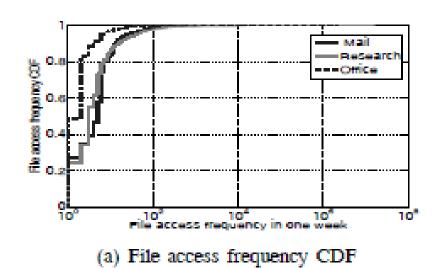
- Benefit value :
$$V_i = (f_i/s_i) R_i$$

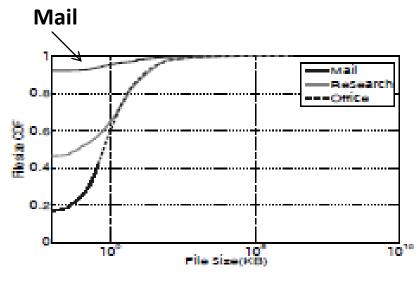
• **MIGRATOR** handles data movement between SSD and disks.

File 1 File 2 File 3 File 4 File 5 $f_1=6$, $s_1=3$, $R_1=5$, $f_2=8$, $s_2=2$, $R_2=4$, $f_3=6$, $s_3=2$, $R_3=6$, $f_4=2$, $s_4=2$, $R_4=7$, $f_5=2$, $s_5=4$, $R_5=6$, Step1 : To Calculate benefit values $V_1 = (6/3)^2 = 4$, $V_2 = 16$, $V_3 = 18$, $V_4 = 7$, $V_5 = 3$ Step2 : Sort all items in the decreasing order of V_i / s_i File 1 = 4/3, File 2 = 8, File 3 = 9, File 4 = 3.5. File 5 = 3/4 File 3, File 2, File 4, File 1, File 5 CAPACITY_{ssd} = 8 Step3 : for $i \leftarrow 1$ to n and TotalSize < CAPACITY_{ssd} do File 4, MoveSet \leftarrow File 3, File 2, if (TotalSize + size; \leq CAPACIT Y_{ssd}) TotalSize $\leftarrow 6$ TotalSize \leftarrow TotalSize + size; $x_i \leftarrow 1;$ Step4 : Add i to MoveSet: } FileSet ssd : File1, File5 FileSet_disk : File2, File3, File4 $SET_{SSD} \leftarrow File 2$, File 3, File4 $SET_{HDD} \leftarrow File 1$, File 5

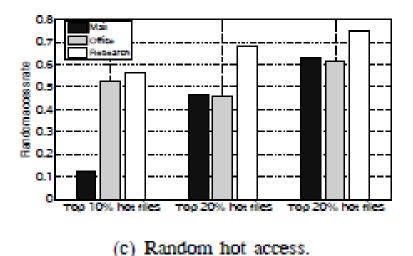
Experimental stady

• Configuration of storage server

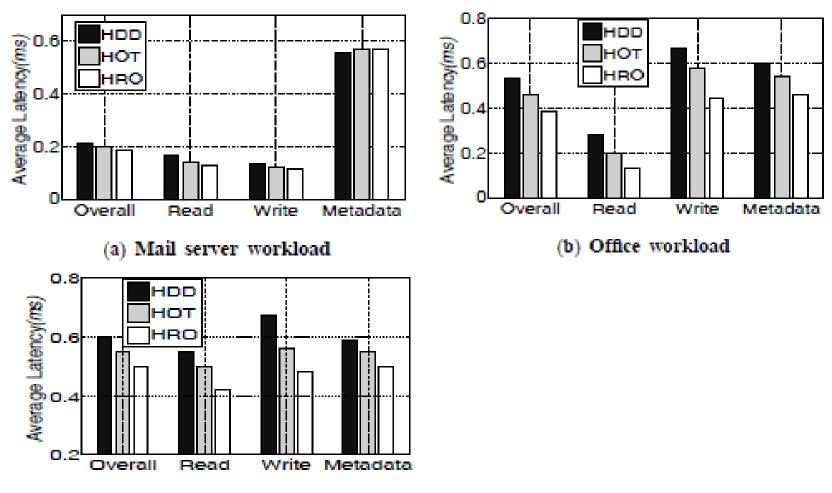

Components	Specification	
Operating system	Ubuntu 10.04 with kernel 2.6.31	
File system	Ext3	
CPU	AMD Opteron dual core 1000Hz	
Memory	1G DDR2 667 Hz	
SSD	OCZ-AGILITY2	
Capacity	60GB	
Sequential Read/Write	20us/70us	
Random Read/Write	270us/375us	
Hard Disk *2	3*WDC WD7500AAKS	
Capacity	750GB	
Rotational speed	7200RPM	
Read Seek	8.9ms	
Track-to –track Seek	2ms	


Experimental stady

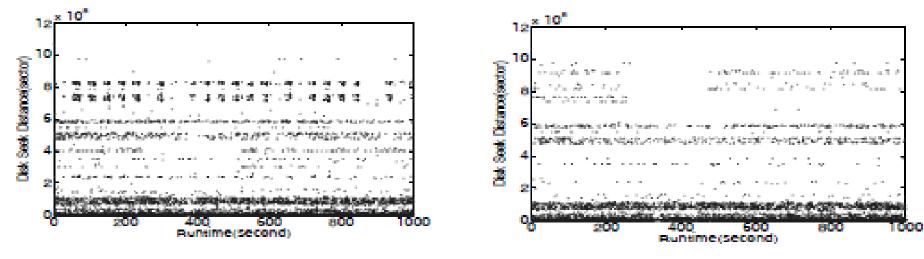
• Statistic of three workloads studied


	Office	Mail	Research
Trace period	One week	One week	One week
Total ops	211,308,494	187,974,468	29,550,778
Metadata ops	66%	14%	75%
Read	24%	65%	10%
Write	10%	21%	15%
Read (MB)	833,135	845,123	32,498
Write (MB)	242,376	313,987	61,488
R/W Ratio	3.4	2.5	0.5

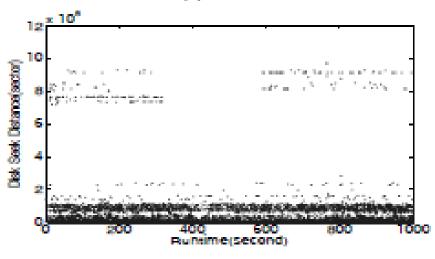
About three workloads



(b) File size CDF



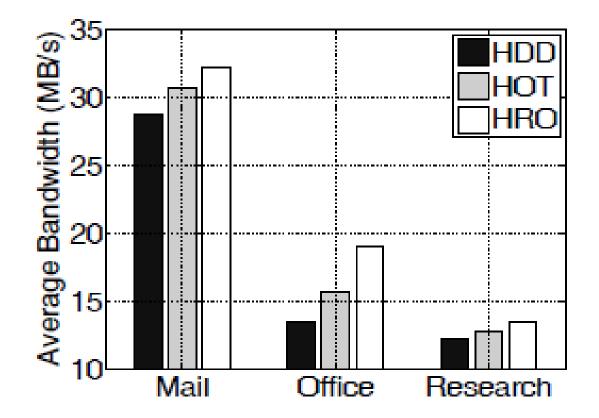
Average Latency



(c) Research workload

Disk seek distance

(a) HDD



HRC

(C)

(b) HOT

Average bandwidth

Conclusions

- In our experiments, the usable storage capacity of SSD is set less than 1% of the hard disk capacity.
- It can effectively improve the overall I/O performance of disks by up to 39% and the latency up to 23%.