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Introduction (1/3)

» Because of the faster rotation speed and the larger
capacity of disks, disks cost more energy

« Currently it Is estimated that disk storage systems
consume about 35 percent of the total power used in
data centers



Introduction (2/3)

« Some energy saving techniques have been proposed
like spinning down the disk

» But there are still some problems
= Energy and response time penalty
= Expected length of inactivity periods
= Number If spin-up/down operations
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Introduction (3/3)

» Power parameters from Seagate Barracuda

(93W)  seek(12.6W)

Description Value Description Value

Idle power 9.3W S 24 W
power

Active 13W Spin-down 93W
power power

gy - 0.8W | Spin-uptime |  15sec

power
Bre?keven 54 sec Spin-down —
time time




Related work

 There are some techniques related to the proposed
scheme
= \Write off-loading

 Minimize the energy consumed due to write requests

- Newly written data Is diverted to disks which is spinning
= Replication for energy saving

- Access data copies from spinning disks

- Transition disks that contain redundant data to standby



Energy-aware scheduling

» Storage system architecture

« Algorithms
= Offline
= Batch
= Online



Storage system architecture

» Data spread across disks
- Data replicated for availability and performance
» Each request for a single data block (512B)
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Scheduling algorithm

o Offline

= A scheduler has a-priori knowledge of the arrival times
of requests

« Batch

= Queues requests and dispatches them all together to
disks periodically at a scheduling interval

« Online

= a scheduler immediately dispatches requests to disks
upon their arrival



Offline scheduling
 The energy saving from any pair of requests Is
determine Ir arrival ti
Tg: idle time threshold
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Offline scheduling algo. (1/3)

time 0 1 3 5 12 13
—1 1 l — >
request - r2:b2 r3:b3 r4:b4 r5:b5 -
disk C EEn

Idle threshold =5
Disk power unit =1

« Operation flow:
*Stepl: compute 3




Offline scheduling algo. (2/3)

time 0 1 3 5 12 13
—i I I — >
request - r2:b2 r3:b3 r4:b4 r5:b5 r6:b6
. e ey ey e
disk
dil d2 d3 d4

« Operation flow:

Step2: add schedule constraints

The successor of R1
IS either R2 or R3

The location of R3 is
either d1 or d2



Offline scheduling algo. (3/3)

time 0 1 3 5 12 13

r4: b4 r5: b5 r6 b6

= e e

« Operation flow; The saved energy compared to
always-on disk is 4+4+3=11

request

disk

N\

«Step3: find the maximum weighted Independent set




Batch scheduling (1/2)

« All requests access disks at the same time

 Energy consumption is proportional to the number of
scheduled disks

« Minimize energy = minimize scheduled disks



Batch scheduling (2/2)
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Online scheduling

« Schedule one request at a time
» The cost function:

= E(d,): Energy cost can be computed by disk idle time
= P(d,): number of requests queued on disk d,
s o, 5 Cost parameter



Simulation (1/4)

» Workload trace
= Cello: collected by IBM
 Simulator
= Omnet++ for system simulation
= DiskSim for disk simulation
- Data placement
= 180 disks
= Qriginal data Is skewed distributed
= Replicated data is uniform distributed
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Simulation (2/4)
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Simulation (3/4)

Normalized energy consumption
o ©o © o o
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Simulation (4/4)
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Conclusions

« Propose scheduling algorithms for online, batch and offline
models

« Show significant performance and energy improvement using
realistic traces

« Future work on better online scheduling algorithm



