Energy-Aware Scheduling in Disk Storage Systems

Jerry Chou, Jinoh Kim, and Doron Rotem

Lawrence Berkeley Lab.

Email: { jchou, jinohkim, d_rotem }@lbl.gov

Distributed Computing Systems (ICDCS), 2011 31st International Conference

Guo-Wei Chen

Outline

- Introduction
- Related work
- Energy-aware scheduling
- Simulation
- Conclusions

Introduction (1/3)

- Because of the faster rotation speed and the larger capacity of disks, disks cost more energy
- Currently it is estimated that disk storage systems consume about 35 percent of the total power used in data centers

Introduction (2/3)

- Some energy saving techniques have been proposed like spinning down the disk
- But there are still some problems
 - Energy and response time penalty
 - Expected length of inactivity periods
 - Number if spin-up/down operations

Introduction (3/3)

• Power parameters from Seagate Barracuda specification

Spinup 2001 Spinup	Description	Value	Description	Value
	Idle power	9.3 W	Spin-up power	24 W
	Active power	13 W	Spin-down power	9.3 W
	Standby power	0.8 W	Spin-up time	15 sec
	Breakeven time	54 sec	Spin-down time	10 sec

Related work

- There are some techniques related to the proposed scheme
 - Write off-loading
 - Minimize the energy consumed due to write requests
 - Newly written data is diverted to disks which is spinning
 - Replication for energy saving
 - Access data copies from spinning disks
 - Transition disks that contain redundant data to standby

Energy-aware scheduling

• Storage system architecture

Algorithms

- Offline
- Batch
- Online

Storage system architecture

- Data spread across disks
- Data replicated for availability and performance
- Each request for a single data block (512B)

Scheduling algorithm

• Offline

- A scheduler has a-priori knowledge of the arrival times of requests
- Batch
 - Queues requests and dispatches them all together to disks periodically at a scheduling interval
- Online
 - a scheduler immediately dispatches requests to disks upon their arrival

Offline scheduling

• The energy saving from any pair of requests is determined by their arrival time *t*

• we can o successo down T_B : idle time threshold P_I : idle power $E_{up}, E_{down}, T_{up}, T_{down}$: the energy and time to spin up anddown spin

$$X(i,j,k) = \begin{cases} E_{up} + E_{down} + (T_B - (t_j - t_i)) * P_I, \\ \text{if } 0 \le t_j - t_i < T_B + T_{up} + T_{down} \\ 0, \text{ otherwise} \end{cases}$$

Offline scheduling algo. (1/3)time 3 12 13 5 0 r3:b3 r1:b1 r2:b2 r4:b4 r5:b5 r6:b6 request disk d1 d4 Idle threshold = 5• Operation flow: Disk power unit = 1•Step1: compute a τS X(1,3,1)=2 X(1,2,1)=4X(2,3,1)=3X(5,6,4)=4X(2,3,2)=3

Offline scheduling algo. (2/3)

• Operation flow:

•Step1: compute all energy saving from requests

•Step2: add schedule constraints

Offline scheduling algo. (3/3)

Batch scheduling (1/2)

- All requests access disks at the same time
- Energy consumption is proportional to the number of scheduled disks
- Minimize energy = minimize scheduled disks

Batch scheduling (2/2)

Energy cost = 5*3 = 15

Energy cost = 5*2 = 10

Online scheduling

- Schedule one request at a time
- The cost function:

$$C(d_k) = E(d_k) * \frac{\alpha}{\beta} + P(d_k) * (1 - \alpha)$$

- *E(d_k)*: Energy cost can be computed by disk idle time
 P(d_k): number of requests queued on disk *d_k*
- α, β : Cost parameter

Simulation (1/4)

- Workload trace
 - Cello: collected by IBM
- Simulator
 - Omnet++ for system simulation
 - DiskSim for disk simulation
- Data placement
 - 180 disks
 - Original data is skewed distributed
 - Replicated data is uniform distributed

Simulation (2/4)

Simulation (3/4)

Simulation (4/4)

Conclusions

- Propose scheduling algorithms for online, batch and offline models
- Show significant performance and energy improvement using realistic traces
- Future work on better online scheduling algorithm