Energy-Aware Scheduling in Disk Storage Systems

Jerry Chou, Jinoh Kim, and Doron Rotem

Lawrence Berkeley Lab.

Email: { jchou, jinohkim, d_rotem }@lbl.gov
Outline

• Introduction
• Related work
• Energy-aware scheduling
• Simulation
• Conclusions
Introduction (1/3)

- Because of the faster rotation speed and the larger capacity of disks, disks cost more energy

- Currently it is estimated that disk storage systems consume about 35 percent of the total power used in data centers
Introduction (2/3)

• Some energy saving techniques have been proposed like spinning down the disk

• But there are still some problems
 ▫ Energy and response time penalty
 ▫ Expected length of inactivity periods
 ▫ Number if spin-up/down operations
Introduction (3/3)

- Power parameters from Seagate Barracuda specification

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idle power</td>
<td>9.3 W</td>
<td>Spin-up power</td>
<td>24 W</td>
</tr>
<tr>
<td>Active power</td>
<td>13 W</td>
<td>Spin-down power</td>
<td>9.3 W</td>
</tr>
<tr>
<td>Standby power</td>
<td>0.8 W</td>
<td>Spin-up time</td>
<td>15 sec</td>
</tr>
<tr>
<td>Breakeven time</td>
<td>54 sec</td>
<td>Spin-down time</td>
<td>10 sec</td>
</tr>
</tbody>
</table>
Related work

- There are some techniques related to the proposed scheme
 - **Write off-loading**
 - Minimize the energy consumed due to write requests
 - Newly written data is diverted to disks which is spinning
 - **Replication for energy saving**
 - Access data copies from spinning disks
 - Transition disks that contain redundant data to standby
Energy-aware scheduling

- Storage system architecture

- Algorithms
 - Offline
 - Batch
 - Online
Storage system architecture

- Data spread across disks
- Data replicated for availability and performance
- Each request for a single data block (512B)
Scheduling algorithm

- **Offline**
 - A scheduler has a-priori knowledge of the arrival times of requests
- **Batch**
 - Queues requests and dispatches them all together to disks periodically at a scheduling interval
- **Online**
 - A scheduler immediately dispatches requests to disks upon their arrival
Offline scheduling

• The energy saving from any pair of requests is determined by their arrival time t

• we can only save energy from a request r_i if its successor request r_j arrives before disk d_k is spun down

T_B: idle time threshold
P_I: idle power
E_{up}, E_{down}, T_{up}, T_{down}: the energy and time to spin up and down

$$X(i, j, k) = \begin{cases}
E_{up} + E_{down} + (T_B - (t_j - t_i)) * P_I, & \text{if } 0 \leq t_j - t_i < T_B + T_{up} + T_{down} \\
0, & \text{otherwise}
\end{cases}$$
Offline scheduling algo. (1/3)

- **Operation flow:**
 - Step 1: compute all energy saving from requests

- Disk power unit = 1
- Idle threshold = 5

- Requests and Disks:
 - r1:b1, r2:b2, r3:b3, r4:b4, r5:b5, r6:b6
 - d1, d2, d3, d4

- Calculations:
 - $X(1,3,1) = 2$
 - $X(1,2,1) = 4$
 - $X(5,6,4) = 4$
 - $X(2,3,2) = 3$
 - $X(2,3,1) = 3$
Offline scheduling algo. (2/3)

- **Operation flow:**
 - Step 1: compute all energy saving from requests
 - Step 2: add schedule constraints

The successor of R1 is either R2 or R3

- The location of R3 is either d1 or d2
Offline scheduling algo. (3/3)

- **Operation flow:**
 - Step 1: compute all energy saving from requests
 - Step 2: add schedule constraints
 - Step 3: find the maximum weighted independent set

The saved energy compared to always-on disk is $4 + 4 + 3 = 11$
Batch scheduling (1/2)

• All requests access disks at the same time

• Energy consumption is proportional to the number of scheduled disks

• Minimize energy = minimize scheduled disks
Batch scheduling (2/2)

Energy cost = 5*3 = 15

Energy cost = 5*2 = 10
Online scheduling

- Schedule one request at a time
- The cost function:

\[C(d_k) = E(d_k) \times \frac{\alpha}{\beta} + P(d_k) \times (1 - \alpha) \]

- \(E(d_k) \): Energy cost can be computed by disk idle time
- \(P(d_k) \): number of requests queued on disk \(d_k \)
- \(\alpha, \beta \): Cost parameter
Simulation (1/4)

- Workload trace
 - Cello: collected by IBM

- Simulator
 - Omnet++ for system simulation
 - DiskSim for disk simulation

- Data placement
 - 180 disks
 - Original data is skewed distributed
 - Replicated data is uniform distributed
Simulation (2/4)
Simulation (3/4)
Simulation (4/4)

(a) Energy consumption

(b) Request response time
Conclusions

- Propose scheduling algorithms for online, batch and offline models
- Show significant performance and energy improvement using realistic traces
- Future work on better online scheduling algorithm