A cross-layer design for TCP endto-end performance improvement in multi-hop wireless networks

Rung-Shiang Cheng^a, Hui-Tang Lib^b

 ^aDepartment of Electrical Engineering, National Cheng Kung University, Taiwan
 ^bDepartment of Electrical Engineering and Institute of Computer Communication Engineering, National Cheng Kung University, Taiwan

Journal of Computer Communications, Volume 31, Issue 14, September 2008, Pages 3145-3152

Outline

- n Introduction
- n Description of proposed method
 - Extension to IEEE 802.11 MAC
 - Modification to TCP
- n Numerical results
- n Conclusion

Introduction

- n IEEE 802.11has emerged as the standard of choice for wireless networks
 - The standard defines the MAC layer and physical layer
- n The MAC layer specifies two media access control services
 - Distributed coordination function (DCF)
 - n Infrastructureless network (i.e. ad hoc networks)
 - Point coordination function (PCF)
- n DCF is based on the conventional carrier sense multiple access with collision avoidance (CSMA/CA) protocol

Introduction (cont.)

Media access mechanisms in IEEE 802.11 DCF

- (a) Basic access mechanism
- (b) Virtual carrier-sensing mechanism

DIFS: Distributed inter-frame space SIFS: Short inter-frame space RTS: Request-to-send CTS: Clear-to-send

Hidden-terminal problem

back-off: 0 ~ contention window (integer)

Introduction (cont.)

- n The CSMA/CA based protocol are limited to one-hop communication
 - With multi-hop communication being taken care of by the upper layer network protocol
- n Multi-hop communication has a problem
 - The network performance is degraded significantly as the number of contending stations increases
- n In wireless networks, channel access contentions may occur
 - Between different flows passing through the same vicinity
 - Between different packets within the same flow
 - $\ensuremath{\,{\rm n}}$ TCP self-collisions in the MAC layer

Introduction (cont.)

- n The inability of TCP to determine whether a packet has been lost as a result of transmission errors or as a consequence of network congestion
- **n** To enhance IEEE 802.11 MAC and TCP protocols
 - TCP is rendered capable of differentiating between corruption and congestion losses by using information received from the MAC layer

Description of proposed method Extension to IEEE 802.11 MAC

- n In standard IEEE 802.11 DCF schemes, whenever a node fails to transmit a frame
 - It retransmits that frame and then increases the value of the retry limit parameter (RET_L)
 - ^{...} If the updated RET_L exceeds a retry threshold value
 - n The MAC layer reports a link breakage to the network layer
 - ${\bf n}\,$ Discards the frame and resets ${\sf RET}_{L}$ to 0
- n The MAC layer may wrongly infer a link failure
 - When the link experiences a high degree of contention
- **n** To introduce a new variable, retransmission limit (RET_F)
 - To record the number of retransmission attempts in the event of continuous transmission failures

Description of proposed method (cont.) Extension to IEEE 802.11 MAC

n If RET_L > retry threshold

- If RET_F < retransmission threshold and receipt of TCP ACK with the same flow
 - n Forward the TCP NAK piggybacks using the reverse TCP ACK along the end-to-end path
 - n Increase the value of RET_F
- $^{\circ}$ Else discard the transmitted packet and then reset the contention window and RET_L
- n Otherwise
 - Increase the contention window and than launch the back-off procedure
 - Increase the value of RET_L

```
RET_F: 0
retransmission threshold: n (default n = 1)
retry threshold: 7 for basic access mechanisms and 4 for virtual carrier-sensing mechanisms
```

Description of proposed method (cont.) Extension to IEEE 802.11 MAC

- n The negative ACK (NACK) is triggered only when a frame is dropped as a result of transmission errors and is limited by the retransmission threshold
- n If a TCP data frame is discarded
 - The MAC layer triggers the TCP NAK option in the TCP header associated with the sequence number of dropped packet
 - To piggyback the option using a reverse TCP ACK to notify the TCP sender

Services implemented in extended IEEE 802.11 MAC protocol

Description of proposed method (cont.) Modification to TCP

- n To regulate the size of congestion window in the TCP layer based on the ACKs received from the receiver
- n Receipt of new ACK
 - If $W < W_t$, set W = W + 1; slow-start phase
 - Else set W = 1 + 1 / W; congestion avoidance phase
- n Receipt of NAK
 - Record the NAK sequence number, and then retransmit the "corrupted packet"

W: the current congestion window size W_t : the slow-start threshold

Description of proposed method (cont.) Modification to TCP

- n Receipt of duplicate ACK
 - Increment duplicate ACK count
 - When duplicate ACK count exceeds specified threshold value, retransmit "next expected packet
 - Set $W_t = W / 2$ and then set $W = W_t$ if the "next expected packet is not a "corrupted packet"
 - Resume congestion avoidance using new window size once retransmission has been acknowledged
- n Upon timer expiry
 - Set $W_t = W / 2$ and then set W = 1
 - Recover the "missing segments" from the slow-start phase

Numerical results

802.11	802.11b	802,11g
50 µs	20 µs	9 µs
28 μs	10 µS	10 µs
128 µs	50 µS	28 µS
128 bits	192 bits	192 bits
32	32	32
1024	1024	1024
	802.11 50 μs 28 μs 128 μs 128 bits 32 1024	802.11 802.11b 50 μs 20 μs 28 μs 10 μs 128 μs 50 μs 128 bits 192 bits 32 32 1024 1024

Default parameters for MAC and physical layers

- n Transmission range (TX_{range}): 40m
- n Physical carrier-sensing range (PCSrange): 85m
- n The height of antenna: 1.5m
- n To operate in the 2.4GHz band
- n The nodes are assumed to be static and to be separated from their immediate neighbors by a distance of 30m

TCP source TCP destination ·····(n)

Chain network topology

Hop count	Goodput			
	TCP-Reno (Mbps)	TCP-CL (Mbps)		
1	13.97	13.95		
2	7.12	7.13		
3	3.54	4.09		
4	2.21	2,99		
5	1.99	2.61		
6	1.82	2,34		
7	1.37	2.18		
8	1,33	2.09		

TCP goodput comparison

Goodput improvement obtained by TCP-CL in multi-hop scenario

- n To use Gilbert-Elliot (GE) error model to mimic fading in the communication channel
- n The frame error rate:
 - ^{••} P_G: 0.0155, P_B: 0.25
 - $^{--}$ P_{GG}: 0.94, P_{GB}: 0.06, P_{BB}: 0.85, P_{BG}: 0.15

Hop count	Goodput (Mbp	Goodput (Mbps)			
	TCP-Reno	TCP-CC	TCP-W	TCP-CL	
1	12.70	12.74	13.02	12.87	
2	6,32	6,26	6.33	6.32	
3	2.72	2.76	2,76	3.67	
4	1.53	1.59	1.66	2.30	
5	1.19	1,28	1.29	2.02	
6	1.03	1,12	1.14	1.86	
7	0.83	0.85	0.84	1.66	
8	0.73	0.80	0.76	1.54	

TCP goodput comparison (with GE error model)

 P_{GB} : The probability of the state transiting from a good state to a bad state P_{GG} : 1 - P_{GB}

- n To use the delayed ACK at the receiver end
 - Delayed packet number , n = 2
 - Delayed time interval, t = 0.1s
- n The delayed ACK scheme alleviates the TCP self-collision problem in wireless link

Hop count	Goodput (Mbps)					
	TCP-Reno	TCP-CC	TCP-W	TCP-CL		
1	14.21	14.27	14.25	14.28		
2	7.12	7.16	7.14	7.16		
3	3,34	3.34	3.25	4.15		
4	1.98	1,93	2.19	2,69		
5	1.57	1.53	1.63	2.31		
6	1.38	1.38	1.43	2.06		
7	0.95	0.97	0.95	1.88		
8	0.85	0.93	0.91	1.79		

TCP goodput comparison (with delayed ACK)

- n One TCP connection and One UDP connection
- n TX_{range}: 40m, PCS_{range}: 85m
- n The nodes are assumed to be static and to be separated from their immediate neighbors by a distance of 30m
- n UDP transmission rate: 1 to 5 Mbps

TCP evaluation topology2

TCP goodput comparison (UDP interference)

- n UDP transmission rate: 1Mbps
- n The frame error rate
 - ^{••} P_G: 0.015, P_B: 0.1 to 0.5
 - $^{\circ}$ P_{GG}: 0.9, P_{GB}: 0.1, P_{BB}: 0.85, P_{BG}: 0.15

- n A series of simulations is conducted on randomly generated ad hoc network topologies
- n Network region: 100m x 100m
- n Wireless station: 20
 - TX_{range}: 40m
 - ··· PCS_{range}: 85m
- n TCP connection: 2 to 9
 - TCP source and TCP destination of each connection are randomly selected

Number of connection	Goodput (Mbps)			
	TCP-Reno	TCP-CC	TCP-W	TCP-CL
2	4.05	4.15	4,05	4,55
3	3.21	3.30	3.28	3.71
4	2.68	2,77	2.79	3.16
5	2.34	2.39	2.37	2.90
6	2.25	2.29	2.26	2.65
7	2,11	2.18	2.15	2.53
8	1.90	2.04	1.94	2.23
9	1.86	1.91	1.92	2.20

Number of connection	Goodput (Mbps)				
	TCP-Reno	TCP-CC	TCP-W	TCP-CI	
2	2.89	2.93	3.04	3.28	
3	2,41	2.54	2,40	2.72	
4	2.09	2.12	2.14	2.45	
5	1.93	1.96	2.01	2,18	
6	1.82	1.85	1.83	2.04	
7	1.68	1.74	1.77	1.96	
8	1.61	1.66	1,72	1.90	
9	1.51	1.60	1.64	1,85	

TCP goodput comparison (two hops)

TCP goodput comparison (three hops)

Number of connection	Goodput (Mbps)				
	TCP-Reno	TCP-CC	TCP-W	TCP-CL	
2	11.58	11,93	11.82	14.82	
3	9.76	10.63	10.66	12.56	
4	8.75	8.87	8,82	10.91	
5	7.24	8,29	8.40	9.34	
6	6.53	7.17	7.27	8.90	
7	6.50	7.14	7.16	8.39	
8	6,13	6.27	6.57	7.58	
9	5.96	6.12	6.26	7.37	

TCP goodput comparison (path of all lengths)

Conclusion

- n The paper has proposed a cross-layer approach to enhance the performance of TCP in multi-hop wireless networks
 - The MAC layer and the transport layer
 - To provide explicit corruption loss information
- n The proposed scheme has a number of advantages
 - A more efficient treatment on frequent transmission losses
 - A faster reaction to corruption losses
 - The ability to distinguish between congestion error and transmission error