
11

HypervisorHypervisor--Based FaultBased Fault--
ToleranceTolerance

THOMAS C. BRESSOUDTHOMAS C. BRESSOUD
Isis Distributed SystemsIsis Distributed Systems

andand
FRED B. SCHNEIDERFRED B. SCHNEIDER

Cornell UniversityCornell University

ACM Transactions on Computer Systems, Vol. 14, No. 1, February ACM Transactions on Computer Systems, Vol. 14, No. 1, February
19961996

Presented by Presented by YehYeh TsungTsung--YuYu

22

OutlineOutline

IntroductionIntroduction
Replica Coordination Protocol Replica Coordination Protocol
PerformancePerformance
Conclusion and future workConclusion and future work

33

IntroductionIntroduction

We propose a software layer between the We propose a software layer between the
hardware and the operating system hardware and the operating system --
HypervisorHypervisor..

Our faultOur fault--tolerant computing system does tolerant computing system does
not require modifications of hardware, not require modifications of hardware,
operating system, or any application operating system, or any application
software.software.

44

IntroductionIntroduction

What is What is HypervisorHypervisor??
–– Virtual machines which Virtual machines which having the same having the same

instructioninstruction--set architecture as the hardware on set architecture as the hardware on
which the which the hypervisorhypervisor executes.executes.

We run protected VM in primary physical We run protected VM in primary physical
host and backup VM in backup physical host.host and backup VM in backup physical host.
–– We keep these We keep these VMsVMs sync in order for app (run in sync in order for app (run in

VM) to survive processor failure.VM) to survive processor failure.

55

IntroductionIntroduction

When primary hardware fails, the VM in When primary hardware fails, the VM in
backup backup harwareharware will take over as soon as will take over as soon as
possible.possible.

66

Replica Coordination ProtocolReplica Coordination Protocol

Idealistically, we hope primary VM is state machine, Idealistically, we hope primary VM is state machine,
and every instruction is deterministic. and every instruction is deterministic.

Since we could make backup VM read the same Since we could make backup VM read the same
sequence of instructions, in order to make backup sequence of instructions, in order to make backup
VM reach the same state.VM reach the same state.

But there is still some nonBut there is still some non--deterministic instruction deterministic instruction
to be made by VM.to be made by VM.
–– See next slide.See next slide.

77

Replica Coordination ProtocolReplica Coordination Protocol

Deterministic instruction : Deterministic instruction :
–– E.g. ADD, DIV.E.g. ADD, DIV.
–– As the same argument is given, the same result As the same argument is given, the same result

is produced.is produced.
There is still some nonThere is still some non--deterministic choice deterministic choice
to make.to make.
–– E.g. reading the timeE.g. reading the time--ofof--day clock.day clock.
–– E.g. E.g. VMVM’’ss interrupt.interrupt.

88

Replica Coordination ProtocolReplica Coordination Protocol

Our generalized assumption 1 :Our generalized assumption 1 :
–– Environment Instruction Assumption : VM is Environment Instruction Assumption : VM is

invoked to simulate when E.I is going to be invoked to simulate when E.I is going to be
execute.execute.

–– What is Environment Instruction ? What is Environment Instruction ?
E.g. reading timeE.g. reading time--ofof--day clock, reading disk day clock, reading disk block.block.

–– Actually E.I is only executed in primary, then Actually E.I is only executed in primary, then
result is transferred to backup.result is transferred to backup.

99

Replica Coordination ProtocolReplica Coordination Protocol

Our generalized assumption 2 :Our generalized assumption 2 :
–– Instruction Stream Interrupt Assumption : Instruction Stream Interrupt Assumption :

A mechanism is available to invoke the VM when a A mechanism is available to invoke the VM when a
specified point in the instruction stream is reached.specified point in the instruction stream is reached.

–– We could support this assumption by recovery We could support this assumption by recovery
register (register (HPHP’’ss PAPA--RISC) which decrement each RISC) which decrement each
time an instruction done, and cause interrupt as time an instruction done, and cause interrupt as
content is zero. content is zero.

1010

Replica Coordination ProtocolReplica Coordination Protocol

Our generalized assumption 2 :Our generalized assumption 2 :
–– Recovery register is to separate instruction Recovery register is to separate instruction

stream into epochs.stream into epochs.
–– In every epoch, primary VM buffer interrupts, and In every epoch, primary VM buffer interrupts, and

forward these to backup VM in the epochforward these to backup VM in the epoch’’s end.s end.
–– Interrupts at backup VM are ignored.Interrupts at backup VM are ignored.

1111

Replica Coordination ProtocolReplica Coordination Protocol

Scenario (primary) : Scenario (primary) :
–– P0 : if primary VM execute P0 : if primary VM execute EnvEnv. Instruction at pc. Instruction at pc

Send [Send [E(pE(p) , pc , Val] to backup and wait for) , pc , Val] to backup and wait for ackack..

–– P1 : if primary VM receives a interruptP1 : if primary VM receives a interrupt
Buffer INT for delivery later.Buffer INT for delivery later.

–– P2 : if primaryP2 : if primary’’s epoch endss epoch ends
Primary send to backup all buffered INT during Primary send to backup all buffered INT during E(pE(p))
and wait for and wait for ackack..
Primary delivers all INT.Primary delivers all INT.
E(pE(p) =) = E(pE(p) +1 , and primary start epoch) +1 , and primary start epoch E(pE(p) .) .

1212

Replica Coordination ProtocolReplica Coordination Protocol

Scenario (backup) : Scenario (backup) :
–– P3 : if backup VM execute P3 : if backup VM execute EnvEnv. Instruction at pc. Instruction at pc

Wait receipt of [Wait receipt of [E(bE(b) , pc , Val] from primary.) , pc , Val] from primary.
If [If [E(bE(b) , pc , Val] is received, then) , pc , Val] is received, then ackack primary.primary.

–– P4 : if backup VM receives a interruptP4 : if backup VM receives a interrupt
ItIt’’s ignored.s ignored.

–– P5 : if epoch endsP5 : if epoch ends
Wait for all buffered INT from primary, if received, Wait for all buffered INT from primary, if received,
then then ackack primary.primary.
Backup VM delivers all INT.Backup VM delivers all INT.
E(bE(b) =) = E(bE(b) +1 , and backup start epoch) +1 , and backup start epoch E(bE(b) .) .

1313

Replica Coordination ProtocolReplica Coordination Protocol

If failure is detected (message timeout), If failure is detected (message timeout),
backup VM execute backup VM execute EnvEnv. Instruction as if it. Instruction as if it’’s s
primary.primary.
–– In next epoch, backup is promoted to primary.In next epoch, backup is promoted to primary.

Unavoidably, INT might be lost when Unavoidably, INT might be lost when
primary fails primary fails transferingtransfering INT to backup. INT to backup.
(discussed later)(discussed later)

1414

Replica Coordination ProtocolReplica Coordination Protocol

Interaction with the environmentInteraction with the environment
–– I/O instructions executed by a backup are I/O instructions executed by a backup are

absorbed by backupabsorbed by backup’’s VM.s VM.

–– Clock Clock synsyn : at the end of epoch.: at the end of epoch.
Make newly promoted primary are consistent with the Make newly promoted primary are consistent with the
failed primary.failed primary.

1515

Replica Coordination ProtocolReplica Coordination Protocol

Interaction with the environment (const.)Interaction with the environment (const.)
–– backup VM can tolerate not receiving interrupts buffered backup VM can tolerate not receiving interrupts buffered

by the primary VM. by the primary VM.
This newly promoted primary simply delivers This newly promoted primary simply delivers ““uncertain uncertain
interruptsinterrupts”” for outstanding I/O operations.for outstanding I/O operations.

–– For disks and networks, driver will reissue its last I/O For disks and networks, driver will reissue its last I/O
instruction upon receiving an uncertain interrupt.instruction upon receiving an uncertain interrupt.

the state of a disk is insensitive to repetitions of I/O operatithe state of a disk is insensitive to repetitions of I/O operation.on.
network protocols themselves send and ignore duplicate network protocols themselves send and ignore duplicate
messages.messages.

1616

Protocol ExampleProtocol Example

Request Read disk block A

Request Write disk block A, y

Request Write disk block A, x

ADD r0,r1,r2

Read clock

ADD r3,r0,r2

DIV r3,r0,r2

Read clock

Read clock

Request Read disk block A

Request Write disk block A, y

Request Write disk block A, x

ADD r3,r0,r2

DIV r3,r0,r2

Read clock

ADD r0,r1,r2

Compute and transfer

Ack
Absorbed by VM

Absorbed by VM

Absorbed by VM

…. ….

End of epoch End of epoch
Forward all
buffered INT and
accompany data

Compute and transfer

Ack

Primary VM Backup VM

1717

Protocol Example, ConstProtocol Example, Const

Read disk block A

Compute and transfer

Ack

….

Primary VM ISR
(read request INT)

Backup VM ISR
(read request INT)

….

Read disk block A

1818

PerformancePerformance

1919

PerformancePerformance

2020

PerformancePerformance

2121

Conclusion and future workConclusion and future work

VM is not the only way to use our approach, for ex, VM is not the only way to use our approach, for ex,
one might modify microkernel.one might modify microkernel.

When timeWhen time--toto--market and cost is sensitive, our market and cost is sensitive, our
design is easier than the hardwaredesign is easier than the hardware--design design
((e.g.HPe.g.HP’’ss NonStopNonStop).).

