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Introduction (1/2)

o Many distributed applications can make use of
large background transfers
— data that humans are not waiting for
— non-deadline-critical
— unlimited demand

e Hand tuning the background transfers risks
— complicating applications
— being too aggressive
— being too timid




Introduction (2/2)

e Goal:

— manage network resources to provide an abstraction of
background transfers.

e TCP Nice:
— Interferes little with foreground flows
— reaps a large fraction of spare network bandwidth
— simplifies application




Design and implementation

e Background
— existing algorithms

e TCP Nice

e Analysis




Background (1/2)

» Congestion control mechanisms in traditional TCP
— congestion signal (packet loss)
— reaction policy (AIMD)

* Problem: signal comes after damage done

 Solutions: proactively detects congestion
— use increasing RTT as congestion signal
congestion <=> increasing queue lengths
<=>increasing RTT




Background (2/2)

« TCP Vegas
— differs from TCP-Reno In its congestion avoidance phase
E + “fn?ﬁnffz_’.l"t"l‘“ // Expected throughput
A W /! Actual throughput

Diff + (E — A) - minRTT

if (Diff < o)
W+ W-+1
else if (Diff > )
We—W-1




TCP Nice (1/4)

* Only modifies sender-side congestion control

e Adds three components to Vegas
— more sensitive congestion detector
— multiplicative decrease on early congestion
— allowcwnd < 1.0




TCP Nice (2/4)

o Estimates the total queue size at the bottleneck

» Total queue size exceeds a fraction of the estimated
maximum queue capacity

— signals congestion

e |In order to affect window sizes <1,

— send a packet out after waiting for the number of
smoothed round-trip delays.

— act as network probes waiting for congestion to dissip:




TCP Nice (3/4)
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Fig.1 Nice Queue Dynamics




TCP Nice (4/4)

e per-ack operation:

If (CurRTT >mInRTT + threshold * (maxRTT — minRTT))
numCong++;

e per-round operation:
If (numCong >f* W)
W =W/2
else { ... Vegas congestion control }




Analysis (1/4)

 Prove small bound on interference

e Malin result

— Interference decreases exponentially with bottleneck
gueue capacity, independent of the number of Nice flows

e Unrealistic model

— Synchronous packet drop

— consider fixed number of connections, m following Reno,
and | following Nice




Analysis (2/4)
* We trace these window sizes across periods.

e The end of a period and the beginning of the next
IS marked by a packet loss.

o W, (t) and W (1) : the total number of outstanding
Reno and Nice packet at time t




Analysis (3/4)

* W(D) = W,(t) + W(t)
e The window dynamics in any period can be split
Into three intervals
— Additive Increase, Additive Increase
— Additive Increase, Additive Decrease
— Additive Increase, Multiplicative Decrease
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Analysis (4/4)

_ _ . service rate of the queue
Additive :Linear : Multiplicative : be the round-trip delay
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Evaluation (1/5)

o Packet size: 512 bytes, propagation delay: 50ms.
 Single bottleneck topology.

15 minute section of a Squid proxy trace logged
« t=0.1, f=0.5 (default)

e Parameters
— spare capacity, number of Nice flows, threshold

e Metric
— average document transfer latency




Evaluation (2/5)

o Experiment 1: vary the spare capacity
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Fig.2 Spare capacity vs Latency. Nice causes low interference
even when there isn’t much spare capacity.




Evaluation (3/5)

o Experiment 2: vary the number of background flows
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Fig.3 Number of BG flows vs Latency. W < 1 allows Nice to
scale to any number of background flows.




Evaluation (4/5)

o Experiment 2: vary the number of background flows
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Fig.4 Number of BG flows vs BG throughput. Nice utilizes 50-
80% of spare capacity without stealing any bandwidth from FG.




Evaluation (5/5)

o Experiment 3: vary the threshold value
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Fig.5 Threshold vs FG latency. Dependence on threshold is weak.




Conclusions

* An end-to-end strategy optimized to support
background transfers.

e Enough usable spare bandwidth out there that can
be nicely harnessed

» Nice makes application design easy
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