TCP Nice: A Mechanism for
Background Transfers

Arun Venkataramani, Ravi Kokku,
and Mike Dahli
University of Texas at Austin, Austin, TX

ACM SIGOPS Operating Systems Review, 2002




Outline

e Introduction

e Design and implementation
— Background
— TCP Nice
— Analysis

e Evaluation

e Conclusions




Introduction (1/2)

o Many distributed applications can make use of
large background transfers
— data that humans are not waiting for
— non-deadline-critical
— unlimited demand

e Hand tuning the background transfers risks
— complicating applications
— being too aggressive
— being too timid




Introduction (2/2)

e Goal:

— manage network resources to provide an abstraction of
background transfers.

e TCP Nice:
— Interferes little with foreground flows
— reaps a large fraction of spare network bandwidth
— simplifies application




Design and implementation

e Background
— existing algorithms

e TCP Nice

e Analysis




Background (1/2)

» Congestion control mechanisms in traditional TCP
— congestion signal (packet loss)
— reaction policy (AIMD)

* Problem: signal comes after damage done

 Solutions: proactively detects congestion
— use increasing RTT as congestion signal
congestion <=> increasing queue lengths
<=>increasing RTT




Background (2/2)

« TCP Vegas
— differs from TCP-Reno In its congestion avoidance phase
E + “fn?ﬁnffz_’.l"t"l‘“ // Expected throughput
A W /! Actual throughput

Diff + (E — A) - minRTT

if (Diff < o)
W+ W-+1
else if (Diff > )
We—W-1




TCP Nice (1/4)

* Only modifies sender-side congestion control

e Adds three components to Vegas
— more sensitive congestion detector
— multiplicative decrease on early congestion
— allowcwnd < 1.0




TCP Nice (2/4)

o Estimates the total queue size at the bottleneck

» Total queue size exceeds a fraction of the estimated
maximum queue capacity

— signals congestion

e |In order to affect window sizes <1,

— send a packet out after waiting for the number of
smoothed round-trip delays.

— act as network probes waiting for congestion to dissip:




TCP Nice (3/4)

. service rate of the queue

. L | ST K
Addinve Linear @ Multiplicative 7 : be the round-trip delay

Increase gDecreasd Decrease excluding all queuing delays.
q=tB B : the buffer capacity
PRI t : the Nice threshold
:,_q..____,.._,__. B -L:
minRTT= 1 maxRTT= T+ B/u

Fig.1 Nice Queue Dynamics




TCP Nice (4/4)

e per-ack operation:

If (CurRTT >mInRTT + threshold * (maxRTT — minRTT))
numCong++;

e per-round operation:
If (numCong >f* W)
W =W/2
else { ... Vegas congestion control }




Analysis (1/4)

 Prove small bound on interference

e Malin result

— Interference decreases exponentially with bottleneck
gueue capacity, independent of the number of Nice flows

e Unrealistic model

— Synchronous packet drop

— consider fixed number of connections, m following Reno,
and | following Nice




Analysis (2/4)
* We trace these window sizes across periods.

e The end of a period and the beginning of the next
IS marked by a packet loss.

o W, (t) and W (1) : the total number of outstanding
Reno and Nice packet at time t




Analysis (3/4)

* W(D) = W,(t) + W(t)
e The window dynamics in any period can be split
Into three intervals
— Additive Increase, Additive Increase
— Additive Increase, Additive Decrease
— Additive Increase, Multiplicative Decrease

B!I—t!'f)

dm - e~

I<

(ur + B)y




Analysis (4/4)

_ _ . service rate of the queue
Additive :Linear : Multiplicative : be the round-trip delay
Increase Decreaseé Decrease excluding all queuing delays.
B : the buffer capacity
' q=tB : the Nice threshold

a R

—t

hm an am wm mm Ar e o o um m

e B ~

minRTT= T maxRTT= T+ B/i




Evaluation (1/5)

o Packet size: 512 bytes, propagation delay: 50ms.
 Single bottleneck topology.

15 minute section of a Squid proxy trace logged
« t=0.1, f=0.5 (default)

e Parameters
— spare capacity, number of Nice flows, threshold

e Metric
— average document transfer latency




Evaluation (2/5)

o Experiment 1: vary the spare capacity

100¢

100 ¥

10 &

Document Latency (sec)

Roauter Prio

0.1 y
1 10 100

Spare Capacity

Fig.2 Spare capacity vs Latency. Nice causes low interference
even when there isn’t much spare capacity.




Evaluation (3/5)

o Experiment 2: vary the number of background flows

1000 ¢

8

—

Document Latency (sec)
=

Router Prio

01 !
1 10 160

Num BG flows

Fig.3 Number of BG flows vs Latency. W < 1 allows Nice to
scale to any number of background flows.




Evaluation (4/5)

o Experiment 2: vary the number of background flows

80000

70000 |

BG Throughput (KB)
3
3
o

1 10 100
Num BG flows

Fig.4 Number of BG flows vs BG throughput. Nice utilizes 50-
80% of spare capacity without stealing any bandwidth from FG.




Evaluation (5/5)

o Experiment 3: vary the threshold value

20
18 +

16 \
1

14+ :
\f\,;

_—
ot
T

FG Latency
o

LR N 2 T - <]
T T Y Y

F—t F t

Y] 02 0.4 0.6 08 1
Threshold

Fig.5 Threshold vs FG latency. Dependence on threshold is weak.




Conclusions

* An end-to-end strategy optimized to support
background transfers.

e Enough usable spare bandwidth out there that can
be nicely harnessed

» Nice makes application design easy




	TCP Nice: A Mechanism for Background Transfers
	Outline
	Introduction (1/2)
	Introduction (2/2)
	Design and implementation
	Background (1/2)
	Background (2/2)
	TCP Nice (1/4)
	TCP Nice (2/4)
	TCP Nice (3/4)
	TCP Nice (4/4)
	Analysis (1/4)
	Analysis (2/4)
	Analysis (3/4)
	Analysis (4/4)
	Evaluation (1/5)
	Evaluation (2/5)
	Evaluation (3/5)
	Evaluation (4/5)
	Evaluation (5/5)
	Conclusions

