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Introduction (1/2)

• Many distributed applications can make use of 
large background transfers
– data that humans are not waiting for
– non-deadline-critical
– unlimited demand

• Hand tuning the background transfers risks
– complicating applications
– being too aggressive
– being too timid



Introduction (2/2)

• Goal:
– manage network resources to provide an abstraction of 

background transfers.

• TCP Nice:
– interferes little with foreground flows
– reaps a large fraction of spare network bandwidth
– simplifies application



Design and implementation

• Background
– existing algorithms

• TCP Nice

• Analysis



Background (1/2)

• Congestion control mechanisms in traditional TCP
– congestion signal (packet loss)
– reaction policy (AIMD)

• Problem: signal comes after damage done
• Solutions: proactively detects congestion

– use increasing RTT as congestion signal
congestion <=> increasing queue lengths 

<=> increasing RTT



Background (2/2)

• TCP Vegas
– differs from TCP-Reno in its congestion avoidance phase



TCP Nice (1/4)

• Only modifies sender-side congestion control
• Adds three components to Vegas

– more sensitive congestion detector
– multiplicative decrease on early congestion
– allow cwnd < 1.0



TCP Nice (2/4)

• Estimates the total queue size at the bottleneck
• Total queue size exceeds a fraction of the estimated 

maximum queue capacity
– signals congestion

• In order to affect window sizes <1,
– send a packet out after waiting for the number of 

smoothed round-trip delays.
– act as network probes waiting for congestion to dissipate



TCP Nice (3/4)

μ: service rate of the queue
τ: be the round-trip delay    

excluding all queuing delays.
B : the buffer capacity
t  : the Nice threshold

Fig.1  Nice Queue Dynamics



TCP Nice (4/4)

• per-ack operation:
if (curRTT > minRTT + threshold * (maxRTT – minRTT))

numCong++;

• per-round operation:
if (numCong > f * W)

W = W/2
else { … Vegas congestion control }



Analysis (1/4)

• Prove small bound on interference
• Main result

– interference decreases exponentially with bottleneck 
queue capacity, independent of the number of Nice flows

• Unrealistic model
– Synchronous packet drop
– consider fixed number of connections, m following Reno, 

and l following Nice



Analysis (2/4)

• We trace these window sizes across periods.

• The end of a period and the beginning of the next 
is marked by a packet loss.

• Wr(t) and Wn(t) : the total number of outstanding 
Reno and Nice packet at time t



Analysis (3/4)

• W(t) = Wn(t) + Wr(t)
• The window dynamics in any period can be split 

into three intervals
– Additive Increase, Additive Increase
– Additive Increase, Additive Decrease
– Additive Increase, Multiplicative Decrease



Analysis (4/4)
μ: service rate of the queue
τ: be the round-trip delay    

excluding all queuing delays.
B : the buffer capacity
t  : the Nice threshold



Evaluation (1/5)

• Packet size: 512 bytes, propagation delay: 50ms.
• Single bottleneck topology.
• 15 minute section of a Squid proxy trace logged
• t = 0.1,  f =0.5 (default)
• Parameters

– spare capacity, number of Nice flows, threshold

• Metric
– average document transfer latency



Evaluation (2/5)

• Experiment 1: vary the spare capacity

Fig.2  Spare capacity vs Latency. Nice causes low interference 
even when there isn’t much spare capacity.



Evaluation (3/5)

• Experiment 2: vary the number of background flows

Fig.3  Number of BG flows vs Latency. W < 1 allows Nice to 
scale to any number of background flows.



Evaluation (4/5)

• Experiment 2: vary the number of background flows

Fig.4  Number of BG flows vs BG throughput. Nice utilizes 50-
80% of spare capacity without stealing any bandwidth from FG.



Evaluation (5/5)

• Experiment 3: vary the threshold value

Fig.5  Threshold vs FG latency. Dependence on threshold is weak.



Conclusions

• An end-to-end strategy optimized to support 
background transfers.

• Enough usable spare bandwidth out there that can 
be nicely harnessed

• Nice makes application design easy
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