
TCP Nice: A Mechanism for
Background Transfers

Arun Venkataramani, Ravi Kokku,
and Mike Dahli

University of Texas at Austin, Austin, TX

ACM SIGOPS Operating Systems Review, 2002

Outline

• Introduction
• Design and implementation

– Background
– TCP Nice
– Analysis

• Evaluation
• Conclusions

Introduction (1/2)

• Many distributed applications can make use of
large background transfers
– data that humans are not waiting for
– non-deadline-critical
– unlimited demand

• Hand tuning the background transfers risks
– complicating applications
– being too aggressive
– being too timid

Introduction (2/2)

• Goal:
– manage network resources to provide an abstraction of

background transfers.

• TCP Nice:
– interferes little with foreground flows
– reaps a large fraction of spare network bandwidth
– simplifies application

Design and implementation

• Background
– existing algorithms

• TCP Nice

• Analysis

Background (1/2)

• Congestion control mechanisms in traditional TCP
– congestion signal (packet loss)
– reaction policy (AIMD)

• Problem: signal comes after damage done
• Solutions: proactively detects congestion

– use increasing RTT as congestion signal
congestion <=> increasing queue lengths

<=> increasing RTT

Background (2/2)

• TCP Vegas
– differs from TCP-Reno in its congestion avoidance phase

TCP Nice (1/4)

• Only modifies sender-side congestion control
• Adds three components to Vegas

– more sensitive congestion detector
– multiplicative decrease on early congestion
– allow cwnd < 1.0

TCP Nice (2/4)

• Estimates the total queue size at the bottleneck
• Total queue size exceeds a fraction of the estimated

maximum queue capacity
– signals congestion

• In order to affect window sizes <1,
– send a packet out after waiting for the number of

smoothed round-trip delays.
– act as network probes waiting for congestion to dissipate

TCP Nice (3/4)

μ: service rate of the queue
τ: be the round-trip delay

excluding all queuing delays.
B : the buffer capacity
t : the Nice threshold

Fig.1 Nice Queue Dynamics

TCP Nice (4/4)

• per-ack operation:
if (curRTT > minRTT + threshold * (maxRTT – minRTT))

numCong++;

• per-round operation:
if (numCong > f * W)

W = W/2
else { … Vegas congestion control }

Analysis (1/4)

• Prove small bound on interference
• Main result

– interference decreases exponentially with bottleneck
queue capacity, independent of the number of Nice flows

• Unrealistic model
– Synchronous packet drop
– consider fixed number of connections, m following Reno,

and l following Nice

Analysis (2/4)

• We trace these window sizes across periods.

• The end of a period and the beginning of the next
is marked by a packet loss.

• Wr(t) and Wn(t) : the total number of outstanding
Reno and Nice packet at time t

Analysis (3/4)

• W(t) = Wn(t) + Wr(t)
• The window dynamics in any period can be split

into three intervals
– Additive Increase, Additive Increase
– Additive Increase, Additive Decrease
– Additive Increase, Multiplicative Decrease

Analysis (4/4)
μ: service rate of the queue
τ: be the round-trip delay

excluding all queuing delays.
B : the buffer capacity
t : the Nice threshold

Evaluation (1/5)

• Packet size: 512 bytes, propagation delay: 50ms.
• Single bottleneck topology.
• 15 minute section of a Squid proxy trace logged
• t = 0.1, f =0.5 (default)
• Parameters

– spare capacity, number of Nice flows, threshold

• Metric
– average document transfer latency

Evaluation (2/5)

• Experiment 1: vary the spare capacity

Fig.2 Spare capacity vs Latency. Nice causes low interference
even when there isn’t much spare capacity.

Evaluation (3/5)

• Experiment 2: vary the number of background flows

Fig.3 Number of BG flows vs Latency. W < 1 allows Nice to
scale to any number of background flows.

Evaluation (4/5)

• Experiment 2: vary the number of background flows

Fig.4 Number of BG flows vs BG throughput. Nice utilizes 50-
80% of spare capacity without stealing any bandwidth from FG.

Evaluation (5/5)

• Experiment 3: vary the threshold value

Fig.5 Threshold vs FG latency. Dependence on threshold is weak.

Conclusions

• An end-to-end strategy optimized to support
background transfers.

• Enough usable spare bandwidth out there that can
be nicely harnessed

• Nice makes application design easy

	TCP Nice: A Mechanism for Background Transfers
	Outline
	Introduction (1/2)
	Introduction (2/2)
	Design and implementation
	Background (1/2)
	Background (2/2)
	TCP Nice (1/4)
	TCP Nice (2/4)
	TCP Nice (3/4)
	TCP Nice (4/4)
	Analysis (1/4)
	Analysis (2/4)
	Analysis (3/4)
	Analysis (4/4)
	Evaluation (1/5)
	Evaluation (2/5)
	Evaluation (3/5)
	Evaluation (4/5)
	Evaluation (5/5)
	Conclusions

