Recovering Device Drivers

Michael M Swift, Muthukaruppan Annamalai, Brian N. Bershad, and Henry M. Levy
Department of Computer Science and Engineering, University of Washington
USENIX OSDI 2004

Presented by Shian-Tai Chiou
08/22/07
Outline

- Introduction
- Device Drivers
- Shadow Driver Design
- Shadow Driver Implementation
- Evaluation
- Conclusions
Introduction

- Improve OS reliability
- Shadow driver
 - Conceal a driver’s failure from its client
 - Recovery from failure
- Four principles
 - Failure should be concealed from clients
 - Recovery logic should be centralized
 - Recovery logic should be generic
 - Low overhead when not needed
Device Drivers (1/2)

- Kernel-mode software component
- Two interfaces
 - Drivers export to kernel
 - Drivers import kernel interface
- Driver class
 - Defined by its interface
- Configuration request
Device Drivers (2/2)

- **Deterministic failures**
 - Sequence of configuration or I/O requests

- **Transient failures**
 - Additional inputs
 - Occur infrequently

- **Fail-stop**
 - Can be detected and stopped

- **Insidious failures**
Shadow Drivers Design (1/4)

- Passive mode
 - Normal operation
 - Monitor all communication between drivers and kernel
 - Transparent to both of them
 - Track the state of the driver as necessary for recovery
Shadow Drivers Design (2/4)

- **Active mode**
 - During recovery
 - Impersonates the failed driver
 - Intercept and respond
 - Impersonates the kernel
 - Restart failed driver
 - Intercept and respond

- **Recovery**
 - Re-establish application configurations
 - Resume pending requests
Taps
- A T-junction placed between kernel and driver
- Replicate calls – passive mode, redirect call – active mode

The communication between kernel and driver must be explicit
- Message or procedure call
Shadow Drivers Design (4/4)

- Shadow manager
 - Interfaces and controls all shadow drivers
 - Receives notification from the fault-isolation subsystem
Implementation (1/5)

- General infrastructure
 - Isolation service
 - Redirection mechanism
 - Object tracking service

- Nooks
 - Separate kernel protection domains
 - Interpose proxy procedures on all communication between kernel and driver
 - Tracks kernel objects used by drivers
Implementation (2/5)

- Adds a shadow manager to OS
 - Initial installation of shadow drivers
Implementation (3/5)

- Passive-mode monitoring
 - Tracks requests
 - Connection-oriented
 - Save the state of each active connection
 - Request-oriented
 - Logs pending commands and arguments
 - Configuration and driver parameters
 - Tracks kernel objects
 - In many cases, calls do no work
Implementation (4/5)

- Active-mode recovery
 - Stop failed driver
 - Garbage collect resources
 - Reinitializing the driver a clean state
 - Transferring relevant shadow driver state into new driver
Implementation (5/5)

- Active-mode proxying of kernel request
 - Respond with information that it has record
 - Drop the request
 - Queue the request
 - Block the request
 - Report that the driver is busy
Hardware
- P4 3.0GHz, 1GB RAM, 80G 7200RPM IDE

Software

<table>
<thead>
<tr>
<th>Device Driver</th>
<th>Application Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound</td>
<td>• mp3 player (zinf) playing 128kb/s audio</td>
</tr>
<tr>
<td>(audigy driver)</td>
<td>• audio recorder (audacity) recording from microphone</td>
</tr>
<tr>
<td></td>
<td>• speech synthesizer (festival) reading a text file</td>
</tr>
<tr>
<td></td>
<td>• strategy game (Battle of Wesnoth)</td>
</tr>
<tr>
<td>Network</td>
<td>• network send (netperf) over TCP/IP</td>
</tr>
<tr>
<td>(e1000 driver)</td>
<td>• network receive (netperf) over TCP/IP</td>
</tr>
<tr>
<td></td>
<td>• network file transfer (scp) of a 1GB file</td>
</tr>
<tr>
<td></td>
<td>• remote window manager (vnc)</td>
</tr>
<tr>
<td></td>
<td>• network analyzer (ethereal) sniffing packets</td>
</tr>
<tr>
<td>Storage</td>
<td>• compiler (make/gcc) compiling 788 C files</td>
</tr>
<tr>
<td>(ide-disk driver)</td>
<td>• encoder (LAME) converting 90 MB file .wav to .mp3</td>
</tr>
<tr>
<td></td>
<td>• database (MySQL) processing the Wisconsin Benchmark</td>
</tr>
</tbody>
</table>
Evaluation (2/4)

- Performance
Evaluation(3/4)

- Fault-tolerance

<table>
<thead>
<tr>
<th>Device Driver</th>
<th>Application Activity</th>
<th>Application Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound (audigy driver)</td>
<td>mp3 player, audio recorder, speech synthesizer, strategy game</td>
<td>Linux-Native: CRASH, Linux-Nooks: CRASH, Linux-SD: CRASH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linux-Native: CRASH, Linux-Nooks: MALFUNCTION, Linux-SD: ✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linux-Native: CRASH, Linux-Nooks: ✓, Linux-SD: ✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linux-Native: CRASH, Linux-Nooks: ✓, Linux-SD: ✓</td>
</tr>
<tr>
<td>Network (e1000 driver)</td>
<td>network file transfer, remote window manager, network analyzer</td>
<td>Linux-Native: CRASH, Linux-Nooks: ✓, Linux-SD: ✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linux-Native: ✓, Linux-Nooks: ✓, Linux-SD: ✓</td>
</tr>
<tr>
<td>IDE (ide-disk driver)</td>
<td>compiler, encoder, database</td>
<td>Linux-Native: CRASH, Linux-Nooks: CRASH, Linux-SD: ✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linux-Native: CRASH, Linux-Nooks: CRASH, Linux-SD: ✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linux-Native: CRASH, Linux-Nooks: CRASH, Linux-SD: ✓</td>
</tr>
</tbody>
</table>
Evaluation (4/4)

- Code size

<table>
<thead>
<tr>
<th>Driver Class</th>
<th>Shadow Driver Lines of Code</th>
<th>Device Driver Shadowed Lines of Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound</td>
<td>666</td>
<td>7,381 (audigy)</td>
</tr>
<tr>
<td>Network</td>
<td>198</td>
<td>13,577 (e1000)</td>
</tr>
<tr>
<td>Storage</td>
<td>321</td>
<td>5,358 (ide-disk)</td>
</tr>
</tbody>
</table>
Conclusion

- Mask device driver failures from both OS and applications