Ethane: Taking Control of the Enterprise

Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, and Nick McKeown
Stanford University

Scott Shenker
U.C. Berkeley and ICSI

SIGCOMM’07, August 27–31, 2007,
Outline

- INTRODUCTION
- OVERVIEW OF ETHANE DESIGN
- ETHANE IN MORE DETAIL
- THE POL-ETH POLICY LANGUAGE
- PROTOTYPE AND DEPLOYMENT
- PERFORMANCE AND SCALABILITY
- CONCLUSIONS
INTRODUCTION (1/2)

- Enterprise networks
 - large, variety of applications and protocols,
 - and typically operate under strict reliability and security constraints;

- Middle-box
 - Provide tools for diagnosis
 - By adding a new layer of protocol
How could we change the enterprise network architecture to make it more manageable?

Ethane is built around three fundamental principles:

- The network should be governed by policies declared over high-level names.
- Policy should determine the path that packets follow.
- The network should enforce a strong binding between a packet and its origin.

A centralized control architecture.
OVERVIEW OF ETHANE DESIGN(1/5)

- Ethane does not allow any communication between end-hosts without explicit permission.
 - Central Controller
 - Ethane Switches
First, Ethane takes over all the binding of addresses.

- DHCP-know which switch port the machine is connected.
- the packet must come from a machine that is registered on the network.
- Users are required to authenticate with the network.
 - binding users to hosts.
Second, the packet must come from a machine that is registered on the network.

Finally, users are required to authenticate themselves with the network.
OVERVIEW OF ETHANE DESIGN(4/5)

Figure 1: Example of communication on an Ethane network. Route setup shown by dotted lines; the path taken by the first packet of a flow shown by dashed lines.
Five basic activities

Registration.
- Hosts-mac, users-name & password, switch-public key.
- at the Controller

Bootstrapping.
- spanning tree

Authentication.
- Hosts <-> switch <-> controller
- Hosts send DHCP request -> name to IP, IP to mac, mac to switch port
- Users is bound to hosts

Flow Setup.

Forwarding.
ETHANE IN MORE DETAIL (1/4)

Figure 2: An example Ethane deployment.
Switches

A Ethane Switch is like a simplified Ethernet switch.

- has several interfaces that send and receive standard Ethernet packets.
- much simpler.
Flow Table and Flow Entries.
- The Switch datapath is a managed flow table.
- Flow entries contain
 - a Header, an Action, Per-Flow Data
- Action—two common types of entry
 - Per-flow entries describing application flows that should be *forwarded*,
 - Per-host entries that describe misbehaving hosts whose packets should be *dropped*.
- Only the Controller can add entries to the flow table.
Figure 3: High-level view of Controller components.
THE *POL-ETH* POLICY LANGUAGE (1/2)

- *Pol-Eth* is a language for declaring policy in an Ethane network.

 ![Condition Example](usrc="bob") ∧ (protocol="http") ∧ (hdst="websrv"):allow;

- Conditions

 - domains include \{usrc, udst, hsre, hdst, apsre, apdst, protocol\}

- Actions

 - *allow, deny, waypoints*, and *outbound-only* (for NAT-like security).

 - waypoints("ids", "webproxy").
THE POL-ETH POLICY LANGUAGE(2/2)

```plaintext
# Groups —
desktops = ["griffin","roo"];  
laptops = ["glaptop","rlaptop"];  
phones = ["gphone","rphone"];  
server = ["http_server","nfs_server"];  
private = ["desktops","laptops"];  
computers = ["private","server"];  
students = ["bob","bill","pete"];  
profs = ["plum"];  
group = ["students","profs"];  
haps = ["wap1","wap2"];  

# Rules —
[(hsr=\text{in}("server") \land hdst=\text{in}("private"))] : deny;  
# Do not allow phones and private computers to communicate
[(hsr=\text{in}("phones") \land hdst=\text{in}("computers"))] : deny;  
[(hsr=\text{in}("computers") \land hdst=\text{in}("phones"))] : deny;  
# NAT-like protection for laptops
[(hsr=\text{in}("laptops"))] : outbound-only;  
# No restrictions on desktops communicating with each other
[(hsr=\text{in}("desktops") \land hdst=\text{in}("desktops"))] : allow;  
# For wireless, non-group members can use http through
# a proxy. Group members have unrestricted access.
[(apsr=\text{in}("haps")) \land (user=\text{in}("group"))] : allow;
[(apsr=\text{in}("haps")) \land (protocol="http") : waypoints("http-proxy");
[(apsr=\text{in}("haps"))] : deny;
]: allow; # Default-on: by default allow flows
```

Figure 4: A sample policy file using Pol-Eth
PROTOTYPE AND DEPLOYMENT

➤ Ethane

➤ connects over 300 registered hosts and several hundred users.

➤ 19 Switches of three different types:
 ➤ Ethane wireless access points and
 ➤ Ethane Ethernet switches in two flavors
Our primary question:
- How many Controllers are needed for a network of a given size?

Consider the question:
- How big does the flow table need to be in the Switch?
Figure 5: Frequency of flow-setup requests per second to Controller over a 10-hour period (top) and 4-day period (bottom).
Figure 6: Flow-setup times as a function of Controller load. Packet sizes were 64B, 128B and 256B, evenly distributed.
PERFORMANCE AND SCALABILITY (4/6)

Figure 7: Active flows for LBL network [19].

Figure 8: Flow-request rate for Stanford network.
PERFORMANCE AND SCALABILITY (5/6)

Performance During Failures

<table>
<thead>
<tr>
<th>Failures</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completion time</td>
<td>26.17s</td>
<td>27.44s</td>
<td>30.45s</td>
<td>36.00s</td>
<td>43.09s</td>
</tr>
</tbody>
</table>

Table 1: Completion time for HTTP GETs of 275 files during which the primary Controller fails zero or more times. Results are averaged over 5 runs.
PERFORMANCE AND SCALABILITY (6/6)

- Flow Table Sizing
 - holding 8K–16K entries, each entry is 64B, such a table requires about 1MB of storage, or as much as 4MB with two-way hashing scheme.
CONCLUSIONS

- It much easier to manage the Ethane network than we expected.
- It is natural and fast to add new policy rules in a single location.