MMSN: Multi-Frequency Media Access Control for Wireless Sensor Networks

Gang Zhou, Chengdu Huang, Ting Yan, Tian He
John. A. Stankovic, Tarek F. Abdelzaher

Department of Computer Science
University of Virginia
Infocom ‘06

Presented by Feng-Chiao Tseng
Outline

• Introduction
• MMSN protocol
 – Frequency Assignment
 – Media Access Design
• Performance Evaluation
• Conclusions
Introduction

• Motivation
 – RTS/CTS are too heavyweight for WSN
 – due to small packet size: 30~50 bytes in WSN vs. 512+ bytes in MANET

• MMSN is the first multi-frequency MAC, specially designed for WSN, where single-transceiver devices are used
MMSN protocol

- **Frequency Assignment**
 - **Exclusive Frequency Assignment**
 - Each node knows its two-hop neighbors’ IDs
 - The smallest ID choose first (choose the smallest available)
MMSN protocol

- **Even Selection**
 - Choose one of the least chosen frequencies
 - Needs a number of two-hop broadcast

- **Eavesdropping**
 - Take a random backoff before broadcast frequency decision
 - only collect information within one hop for decision
 - more conflicts
 - Only broadcast to one hop neighbors
 - less communication overhead
MMSN protocol

<table>
<thead>
<tr>
<th>#frequencies \geq #nodes within two hops</th>
<th>#frequencies $<$ #nodes within two hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusive Frequency Assignment</td>
<td>Even Selection</td>
</tr>
<tr>
<td>• guarantee that nodes within two hops get different frequencies</td>
<td>• Balance available frequencies within two hops</td>
</tr>
<tr>
<td></td>
<td>• The left scheme has fewer potential conflicts</td>
</tr>
<tr>
<td></td>
<td>• The right one has less communication overhead (energy-efficient)</td>
</tr>
</tbody>
</table>

Eavesdropping
MMSN protocol

• Media Access Design
 – Maximize parallel transmission
 – One specific frequency is used for broadcast (f_0)
 – Time is divided into slots

Compete for the same broadcast frequency

Compete for unicast frequency
MMSN protocol

- Case 1: Has no packet to transmit

Sensing until $T_{PacketTransmission}$
MMSN protocol

– Case 2: Has a broadcast packet to transmit

\[T_{bc} \quad T_{trans} \]

(a) Back off \((f_0)\) \(\xrightarrow{\text{Signal}(f_0)}\) Receive BC \((f_0)\)

(b) Back off \((f_0)\) \(\xrightarrow{\text{Send broadcast packet}(f_0)}\)
MMSN protocol

- Case 3: Has a unicast packet to transmit
MMSN protocol

– Toggle snooping
 • During “back off \((f_{self}, f_{dest})\)“, toggle snooping is used
Performance Evaluation

• Simulation Configuration
 – GloMoSim

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TERRAIN</td>
<td>(200m×200m) Square</td>
</tr>
<tr>
<td>Node Number</td>
<td>289</td>
</tr>
<tr>
<td>Node Placement</td>
<td>Uniform</td>
</tr>
<tr>
<td>Application</td>
<td>Many-to-Many/Gossip CBR Streams</td>
</tr>
<tr>
<td>Payload Size</td>
<td>32 Bytes</td>
</tr>
<tr>
<td>Routing Layer</td>
<td>GF</td>
</tr>
<tr>
<td>MAC Layer</td>
<td>CSMA/MMSN</td>
</tr>
<tr>
<td>Radio Layer</td>
<td>RADIO-ACCNOISE</td>
</tr>
<tr>
<td>Radio Bandwidth</td>
<td>250 Kbps</td>
</tr>
<tr>
<td>Radio Range</td>
<td>20m~45m</td>
</tr>
</tbody>
</table>
Performance Evaluation

- Different traffic pattern
 - 50 CBR streams
Performance Evaluation

(d) Energy Consumption Per Delivered Data Byte
Performance Evaluation

- Different System Loads
 - Use gossip traffic

(b) Aggregate Throughput in MAC
Performance Evaluation

(d) Energy Consumption Per Delivered Data Byte
Conclusions

• Contributions
 – First multi-frequency MAC, specially designed for WSN, where single-transceiver devices are used
 – No RTS/CTS overhead
 – Explore tradeoffs in frequency assignment
 – Design toggle snooping