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INTRODUCTION

¢ A class of distributed multimedia applications that
we call

Endpoint A, Endpoint B,

Internet

Cluster-to-Cluster
Data Path

Endpoint Ay Endpoint By
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Fig. 1. C-to-C application model.



INTRODUCTION

¢ An important issue Is

— Individual flows use a variety of transport-level protocols,
including those without congestion control.

— it is essential that aggregate application traffic is
congestion responsive




INTRODUCTION

¢ Applying congestion control to aggregate C-to-C
application traffic.

¢ Leveraging existing single-flow congestion control
schemes for C-to-C aggregate flows such that :
— Cluster endpoints are informed of bandwidth available.
— Endpoints may respond to this information.

— End-to-end semantics are preserved for each individual
flow.

— Aggregate application traffic is congestion responsive.



INTRODUCTION

¢ An aggregate congestion control scheme should
support multiple flowshares.

¢ A C-to-C application that involves multiple flows
should receive multiple flowshares.

¢ An application with  flows may receive the
equivalent of flowshares.

¢ For example, some application flows may take
more than a single flowshare,while others take
less.



INTRODUCTION

¢ The main contributions of this paper are:
— Coordination Protocol (CP)
— TCP Friendly Rate Control (TFRC)
— Bandwidth filtered loss detection (BFLD)




COORDINATION PROTOCOL (CP)

¢ CP is implemented between the network layer (IP)
and the transport layer (TCP, UDP, etc.).
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Fig. 2. CP network architecture.



COORDINATION PROTOCOL (CP)

¢ Using the CP header :
— a cluster AP identifies C-to-C application packets and
— Attaches network probe information to each.

¢ An AP uses aggregate measurements of RTT and
loss to drive a rate-based congestion control
algorithnm (e.g., TFRC or RAP).



COORDINATION PROTOCOL (CP)

¢ When C-to-C endpoints receive this estimate,
they respond by modifying their sending rate.

& The benefits of this approach mclude:
— A fast ferwarding path
— Aggregate bandwidthr availaniity,

— Complete application contrel eVver the manner Infwhaich
an aggregate: CONgestion FESPeNSE! IS realized.

— Suppert for multiple flewshares.



COORDINATION PROTOCOL (CP)
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Fig. 3. CP packet structure.

¢ The basic operation of CP is as follows:
— As packets originate from source endpoints
— As packets arrive at the local AP
— As packets arrive at the remote AP
— As packets arrive at the destination endpoint



COORDINATION PROTOCOL (CP)

¢ The APs use fields in the CP header to measure
RTT and detect loss :

— To measure RTT

¢ Inserts a timestamp which is echoed along with the delay
since that timestamp was received.

¢ RTT = current time - timestamp echo -echo delay.
— To detect loss :
¢ inserts a monotonically increasing sequence number.



COORDINATION PROTOCOL (CP)

¢ TCP (C-TCP) and UDP (C-UDP) implemented
using a modified socket API.

¢ UDP(C-UDP) : provide an interface to set :
— the C-to-C application id and flow id,

— and get the latest estimated RTT, aggregate loss rate,
and estimated available bandwidth.

¢ TCP (C-TCP) : provides the same end-to-end
semantics as TCP (i.e., a reliable byte stream),
but relies on the underlying CP protocol to detect
congestion and suggest an appropriate sending
rate.



SINGLE FLOWSHARES

¢ We refer to our ns2 implementation of the TFRC
congestion control algorithm in CP as CP-TFRC.

¢ transmission rate X (bytes/sec) :
IS the packet size (bytes),
IS the round trip time (sec),
IS the loss event rate,
Is the TCP retransmission timeout (sec)

IS the number of packets acknowledged by a single
TCP acknowledgement.



SINGLE FLOWSHARES

A

Bottleneck Link

Fig. 4. Simulation testbed in ns2.

Bottleneck delay 50 ms
Bottleneck bandwidth 15 Mb/sec
Bottleneck queue length

Bottleneck queue type

Simulation duration 180 sec

TABLE 1
CONFIGURATION PARAMETERS.




SINGLE FLOWSHARES

¢ Compare aggregate CP-TFRC traffic using a single
flowshare with competing TFRC flows.
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Fig. 4. Simulation testbed 1n ns2.




SINGLE FLOWSHARES
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TFRC versus CP-TFRC normalized throughput as the number of
reting TFRC flows 1s varied.




SINGLE FLOWSHARES
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Fig. 6. TFRC versus CP-TFRC normalized throughput as the number of
flows 1n the C-to-C aggregate 1s varied.




MULTIPLE FLOWSHARES

¢ That single-flow congestion control algorithms
break when a sender fails to limit their sending
rate to the rate calculated by the algorithm.

¢ After discussing the problem, we present a new
technique,

In enabling multiple flowshares.



MULTIPLE FLOWSHARES

¢ Allow C-to-C applications to  flowshares In
aggregate traffic,where Is equal to the number
of flows In the application.



MULTIPLE FLOWSHARES
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Fig. 4. Simulation testbed 1n ns2.




MULTIPLE FLOWSHARES
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Fig. 7. Throughput for multuple Howshares (naive approach).



MULTIPLE FLOWSHARES
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Fig. 8. Loss event rate calculation for TFRC.




MULTIPLE FLOWSHARES

¢ Our solution to the problem of loss detection in a
multiple flowshare context is called

¢ A sampling fraction F is calculated as :
— F — BavaiI/BarriV' If Bavail = Barriv’ then F IS Set tO 1.0.

— available bandwidth(B,, ;) calculated by the congestion
control algorithm employed at the AP.

— arrival bandwidth(B,_,) Is an estimate of the bandwidth
currently being generated by the C-to-C application.



MULTIPLE FLOWSHARES
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Fig. 9. Virtual packet event stream construction by BFLD.

¢ A random number Is generated in the interval O
<r<1.0.Ifrisin the interval 0 < <F



MULTIPLE FLOWSHARES
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Fig. 10. Throughput for multiple flowshares using BFLD.




IMPLEMENTATION AND
EVALUATION

¢ The Coordination Protocol using FreeBSD and
Linux.

¢ GO on to present results shewing how: BELD
PErermS In an expermental network:.

¢ Usingl UDPE packets with CF packet headers

nested wWithinr the: first 20! Bby/ies of application
ofzlizl



IMPLEMENTATION AND
EVALUATION
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Fig. 11. Experimental network setup.

¢ Network monitoring :

— First, used to capture TCP/IP headers from packets
traversing the bottleneck.

— Second, monitor queue size, packet forwarding events,
and packet drop events.



IMPLEMENTATION AND
EVALUATION

¢ Normalized throughput ratio :

— normalized average throughput for a single TCP flow to
the normalized average throughput for a single CP
flowshare.

¢ coefficient of variance (C.0.V.) -

— the degree of throughput variation seen in aggregate
TCP and CP traffic:



IMPLEMENTATION AND
EVALUATION

¢ Delay experiments
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Fig. 12.  Normalized throughput ratio as delay varies.




IMPLEMENTATION AND
EVALUATION

1

7TCP7 CP ——
14 TCP 14 CP —w—
21 TCP 21 CP -3
28 TCP 28 CP —a—
35 TCP 35 CP —a— _
7 TCP 35 CP ---a---r
A5 TCP 7 CP —-en-

o
©
>
>
S

60 80 100 120 140
BTT (ms)

C.0O.V. ratio as delay varies.




IMPLEMENTATION AND
EVALUATION

¢ Bottleneck bandwidth experiments
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Fig. 14. Normalized throughput ratio as bottleneck bandwidth varies.



IMPLEMENTATION AND
EVALUATION
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C.0.V. ratio as bottleneck bandwidth varies.




IMPLEMENTATION AND
EVALUATION

¢ Random loss experiments
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Fig. 16. Normalized throughput ratio as random loss varies.,



IMPLEMENTATION AND
EVALUATION
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Fig. 17. C.O.V. ratio as random loss varies.



IMPLEMENTATION AND
EVALUATION

¢ Traffic load experiments
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. 18, Loss rates generated by background web traffic.



IMPLEMENTATION AND
EVALUATION
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IMPLEMENTATION AND
EVALUATION
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Fig. 20. C.O.V. ratio as competing load varies.




SUMMARY AND FUTURE WORK

¢ The Coordination Protocol (CP) works by
providing network probe mechanisms that
measure round trip time and packet loss for
aggregate application traffic.

¢ Using BFLD, aggregate C-to-C traffic can
effectively realize multiple flowshares.

¢ Finally, an issue we have considered for future
work Is the use of wireless endpoints within a C-
to-C application cluster.
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