TOE : TCP Offload Engine

Speaker: Chang chin-her

Outline

- Introduction
- TOE over TCP/IP
- The implementation of TOEs
- Performance with TCP Offload
- Conclusin

Introduction(1/2)

 Today, the growth of Ethernet from 10 Mbit/s to 10 Gbit/s.

 I/O is becoming a major bottleneck in delivering high-speed computing.

The performance degradation problem can be particularly severe in Internet SCSI (iSCSI).

Introduction(2/2)

Thumb law: For every one bit per second of network data processed, one hertz of CPU processing is required.

 TCP/IP offload Engine (TOE) that can reduce the amount of TCP/IP processing handled by microprocessor and server I/O subsystem.

TOE over TCP/IP(1/5)

Figure 1. Comparing standard TCP/IP and TOE-enabled TCP/IP stacks

TOE over TCP/IP(2/5)

- TCP/IP helps ensure reliable, in-order data delivery.
 - Reliability
 - In-order data delivery.
 - Flow control.
 - Multiplexing.

TOE over TCP/IP(3/5)

- Traditional methods to reduce TCP/IP overhead offer limited gains:
 - TCP/IP checksum offload
 - Large send offload(LSO)=
 TCP segmentation offload (TSO)

TOE over TCP/IP(4/5)

- TOEs reduce TCP overhead on the host processor
 - CPU interrupt processing
 - Memory copies
 - RDMA
 - zero-copy algorithms
 - Protocol processing

TOE over TCP/IP(5/5)

Figure 2. Transmitting data across the memory bus using a standard NIC

The implementation of TOEs(1/4)

Network adapters that can handle TCP/IP processing operations.
 partial versus full offloading

- Extensions to the TCP/IP software stack that offload specified operations to the network adapter.
 - completely transparent to the higher-layer protocols.

The implementation of TOEs(2/4)

Processor-based vs Chip-based

Processor-based:

- ♦ expensive
- still can create bottlenecks at 10 Gbps and beyond.
- partial or full offloading

Chip-based:

- ◆better performance
- ♦ cheap
- partial offloading

The implementation of TOEs(3/4)

- Partial versus full offloading
- A partial TOE implementation does not handle the following:
 - TCP connection setup
 - Fragmented TCP segments
 - Retransmission time-out
 - Out-of-order segments

The implementation of TOEs(4/4)

- The host software uses dynamic and flexible algorithms to determine which connections to offload.
- In addition, the host software is responsible for preventing denial of service (DoS) attacks.

Performance with TCP Offload

- Throughput
- CPU utilization
- Latency

Conclusion(1/2)

- There is no standard driver interface for major operating systems and TOE adapters.
- The market expects network adapters to be inexpensive.

Conclusion(2/2)

- Memory bandwidth and bus bandwidth are just two of the most critical system dimensions that need to be monitored as systems adopt 10 Gigabit Ethernet.
- TCP Segmentation Offload and Zero-Copy function has been included Linux 2.6.x