
Tag：a Tiny Aggregation Service
for Ad-Hoc Sensor Networks

Samuel Madden, Michael Franklin, Joseph
Hellerstein,Wei Hong

UC Berkeley
Usinex OSDI’02

Outline

Introduction
The Tiny AGgregation Approach
Aggregate structure and Implementation
Additional Benefits of TAG
Simulation
Optimizations
Experimental results
Conclusion

Introduction

Sensor networks is to extract data from
the network environment
Data could be raw sensor readings or
summaries/aggregations of many
readings
Previous work view aggregation as an
application specific mechanism
It would be implemented on a per-need
basis in error prone languages like
C(aggregation)

Introduction(cont.)

It must be provided as a core service by
the system software (TAG)rather than a set
of extensible C APIs
Useful to non networking or programming
experts who can focus on their custom
applications without worrying about
underlying hardware/software and data
collection mechanisms

This Paper Approach

Hardware:Motes
Atmel 4MHz
RAM 4KB
FlashRom 128KB
EEPROM 512kB
917MHzRFM

SoftWare： TinyOs
Routing：
Ad-Hoc (AODV)
Motivation TAG
Approach

Tag Approach

Essential Attributes
SQL-style syntax： Simple, declarative
interface for data collection and aggregation

Time & power-efficient manner：
Intelligently distributes and executes aggregation
queries in the sensor network

Computing over the data as it flows
through the sensors, discarding
irrelevant information and combining
relevant readings

Tag operation

Users pose aggregation queries from a
base station
Messages propagate from the base
station to all nodes through routing tree
rooted at base station
Divide time into epoch and in each
epoch, Sensors route local and children
data back to user using routing tree
As data flows up the tree, it is aggregated
according to aggregation function and
value based partitioning specified in
original query

SQL style query syntax
SELECT: specifies an arbitrary
arithmetic expression over one or
more aggregation values
expr: The name of a single
attribute
agg: Aggregation function
Attrs: selects the attributes by
which the sensor readings are
partitioned
WHERE, HAVING: Filters out
irrelevant readings
GROUP BY: specifies an
attribute based partitioning of
readings
EPOCH DURATION: Time
interval of aggr record
computation
Each record is a <groupID,
aggregate_value> pair

Aggregate structure

Implemet agg via three function
Merging function f

<z>=f(<x>,<y>)
Ex.For Average case :SUM and COUNT
f(<S1,C1>,<S2,C2>)=<S1+S2,C1+C2>

Initializer I
i(x)=<x,1>

Evaluator e
e(<S,C>)=S/C

Attribute Catalog

Queries in TAG contain named attributes
Each motes has a small catalog of attributes
that can be searched for attributes of a specific
name
Central query processor caches or stores
attributes of all motes it may access
When a TAG sensor receives a query, it converts
names fields into local catalog identifiers, or
sends back a NULL if it is lacking the attribute
Not all nodes have identical catalogs, so can be
implemented for heterogeneous sensing

In Network Tiny Aggregation
Distribution phase

Collection phase

p

r

In Network Tiny Aggregation
Distribution and Collection Phases with goal to reduce messages
Mote p receives a request r to aggregate, wakes up synchronizes
clock
p chooses sender of message as its parent and r includes
interval in which p must reply back with partial state record
P then sends the message down the network to its children,
setting the delivery interval for its children to reply back by
broadcasting r
This propagation ends when all nodes in the network are queried
During the epoch after the propagation, each mote listens for
messages from its children during the specified interval.
Then computes a partial state record consisting of any child
values heard with its own local sensor readings.
Each mote transmits this partial state record up the network
Every epoch, new aggregate produced
Most of the times, motes are idle and in low power state

Pipelining the communication schedule

Grouping

Each sensor placed in exactly one group
partitioned according to an expression
over all attributes
Basic grouping technique: push the
query down network, as the nodes to
choose which group they belong to, as
they flow upwards, update aggregate
values in appropriate groups, and now
partial state records are attached with a
group ID (groupid,value)

Grouping example

Additional Benfits of TAG

Ability to tolerate disconnections and loss, as
lost nodes can reconnect to network by listening
to another node’s state records, even if not
intended for them.
In TAG, each node transmits only one value. In
non-TAG, nodes at top of tree have to transmit lot
more values and get drained faster
Also, by dividing time into epochs, long idle times
are present for the processor and radio to be put in
deep sleep modes with little power.

Simulation Based Evaluation

Simulated TAG in Java
Simple: nodes have perfect lossless communication
with regularly placed neighbors
Random: nodes’ placement random
Realistic model to capture actual behavior of radio
and link layer on TinyOS motes (uses results from
real world experiments to approximate actual loss
of TinyOS radio) – has high loss rates

Simulator models mote behavior at a course level:
time divided in epochs, messages encapsulated in
java objects
Simulation cannot model fine grained details of
network like real world characteristics and
modeling radio contention at a byte level

Performance of TAG

MIN & COUNT – small as
only one integer per
partial state record
Average – 2 integers, so
double cost of distributive
Median – same as
centralized as parents
have to forward all
children’s values to root
Count Distinct – only
slightly less expensive
Histogram – size of fixed-
width buckets = 10,
sensor values ranged over
interval [10..1000]

Optimizations

Channel sharing:
If node misses initial request to aggregate, it can
snoop (at regular intervals) network traffic and
“catch up” and include itself
Can also reduce the number of messages if node
sees a higher value reported that its own for MAX,
it will not bother to send a message
Reduces number of messages sent

Improving tolerance to loss

Wanted to see the effect of the loss of a single
node and how long network takes to stabilize and
children of lost node to find new parents

Max loss of variable and some aggregates are more
sensitive to a single loss than others.
COUNT has large error in worst case: if node that
connects the root to a large portion of the network
is lost, temporary error is high.

Effect of a Single Loss

Child Caching

Parents remember
the partial state
records their
children reported
for some number of
rounds

Use those previous
values when new
values are
unavailable due to
lost child messages

Experimental Results

16 nodes, depth 4 tree,
COUNT aggregate
Number of messages

Centralized: 4685
TAG: 2330
50% better!!

Centralized approach:
Increased network
contention, Per hop loss
rates = 15% (TAG = 5%)

Centralized approach :
Only 45% of messages
from nodes at bottom of
tree reached root.

Conclusion

TAG is based on a declarative query
interface

Uses aggregation extensively
Makes network tasking easier for the user who
does not have to modify low level code or
worry about topology, routing and loss
tolerance

TAG better than centralized approaches in
most cases due to aggregation
In network approach an order of
magnitude reduction in bandwidth and
power consumption

