Chapter 6 Delivery and Routing of IP Packets

Outline

□ Delivery

□ Forwarding

□ Routing

□ Structure of a Router

Delivery v.s. Routing

Delivery

- The way a packet is handled by the underlying networks under the control of the network layer
 - □ Connectionless v.s. connection-oriented service
 - Direct v.s. indirect delivery
- □ Routing
 - The way routing tables are created to help in forwarding
 - □ Static and dynamic routing

Delivery

- Delivery of a packet
 - The network layer supervises the handling of the packet by the underlying physical networks
- □ Two important concepts
 - Connection types
 - □ Connection-oriented v.s. connectionless services
 - Direct versus indirect delivery

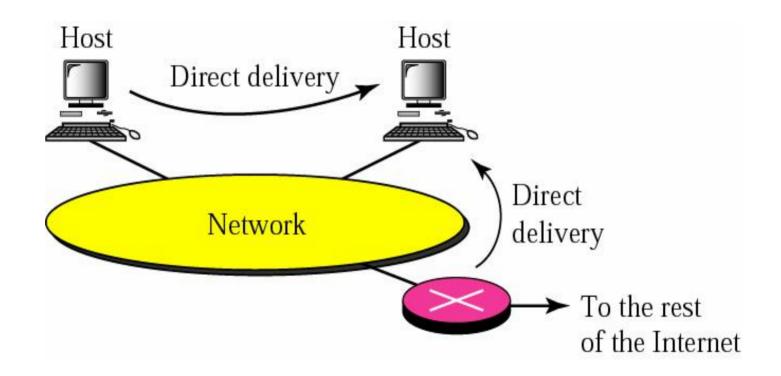
Connection Types

Connection-Oriented Services

- The network layer protocol first makes a connection before sending a packet
- There is a relationship between the packets
 - □ They are sent on the same path in *sequential order*
- The decision about the route of a sequence of packets is made only one
 - □ When the connection is established

Connectionless Services

- The network layer treat each packet independently
- Each packet having no relationship to any other packet
- IP protocol is a connectionless protocol

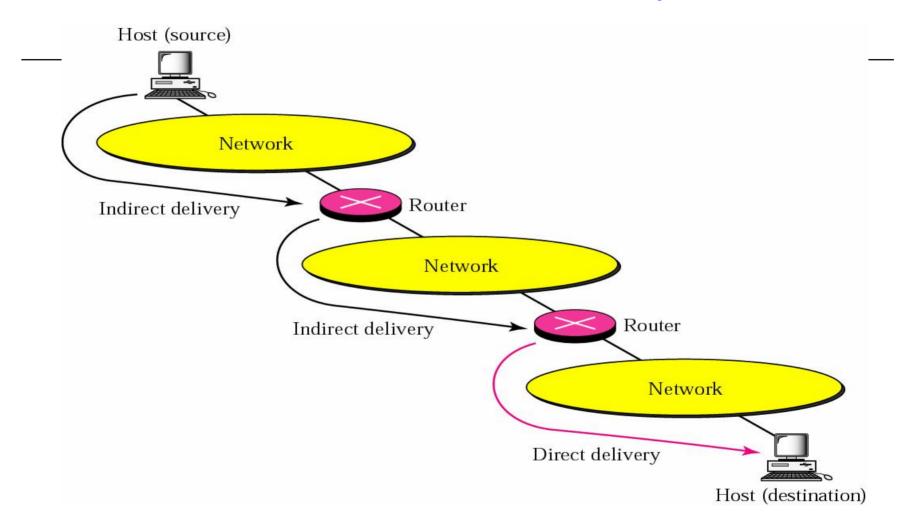

Direct Versus Indirect Delivery

The delivery of a packet may be direct or indirect

Direct Delivery

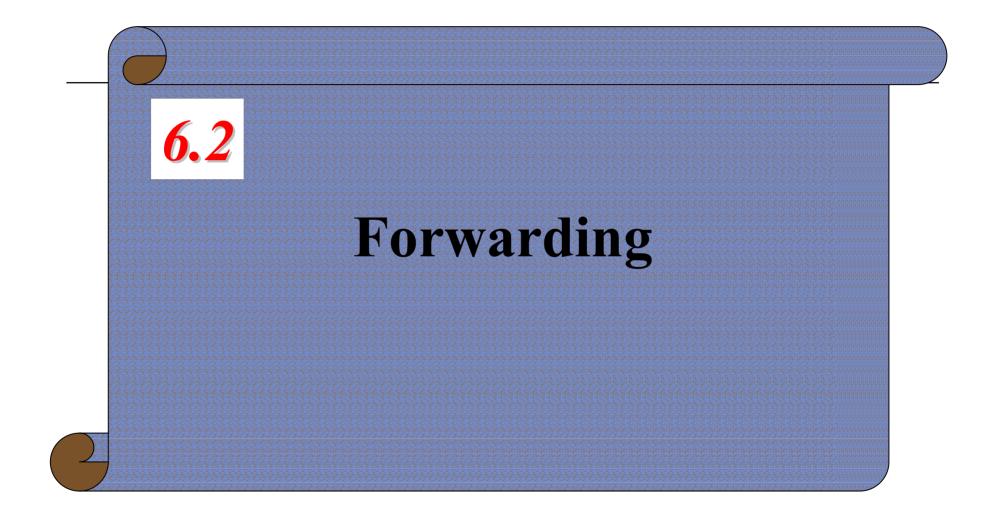
- The final destination is a host in the same physical network as the deliverer
 - When the source and destination are located on the same physical network
 - Or the delivery is between the last router and the destination host

Direct Delivery


Direct Delivery (Cont.)

- □ How to determine if the delivery is direct
 - Compare the *network addresses* between *the destination* and *the current network*
- For direct delivery, the sender uses the destination *IP* address to find the destination *physical address*
 - Static method: finding a table
 - Dynamic method: use the address resolution protocol (ARP)

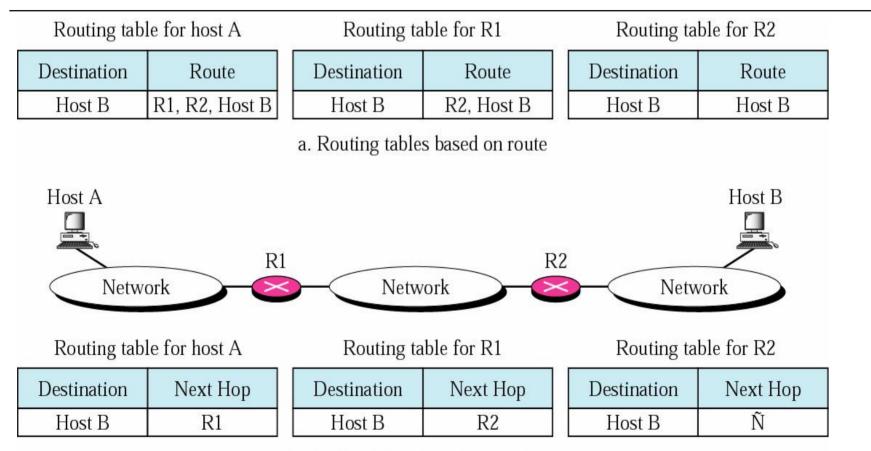
Indirect Delivery


- The destination host and the deliverer are not on the same network
 - Packet goes from routers to routers
- □ For indirect delivery
 - The sender uses *the destination IP address* and *a routing table* to find *the next router's IP address*
 - Then, the sender uses ARP protocol to find the next router's physical address

Indirect Delivery

Indirect Delivery (Cont.)

- A delivery always involves one direct delivery but zero or more indirect deliveries
- Besides, the last delivery is always a direct delivery

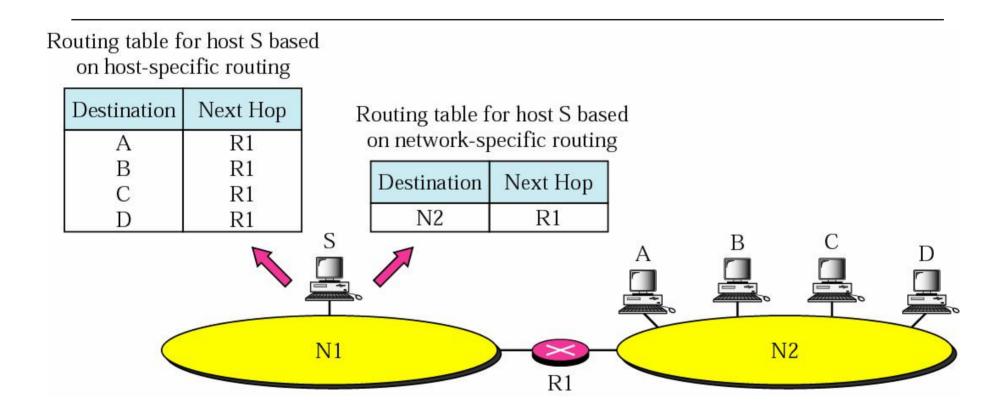

Forwarding

- □ *Forwarding*: place the packet in its route to its destination
- □ Forwarding requires a host/router to have a *routing table*
- □ However, with the increase of hosts,
 - The number of entries in the routing table also increase
- Techniques to decrease the table size and handle issues such as security
 - Next-hop routing
 - Network-specific routing
 - Host-specific routing
 - Default routing

Next-Hop Routing

- Routing table holds only the address of the next hop
 - Instead of holding information about the complete route

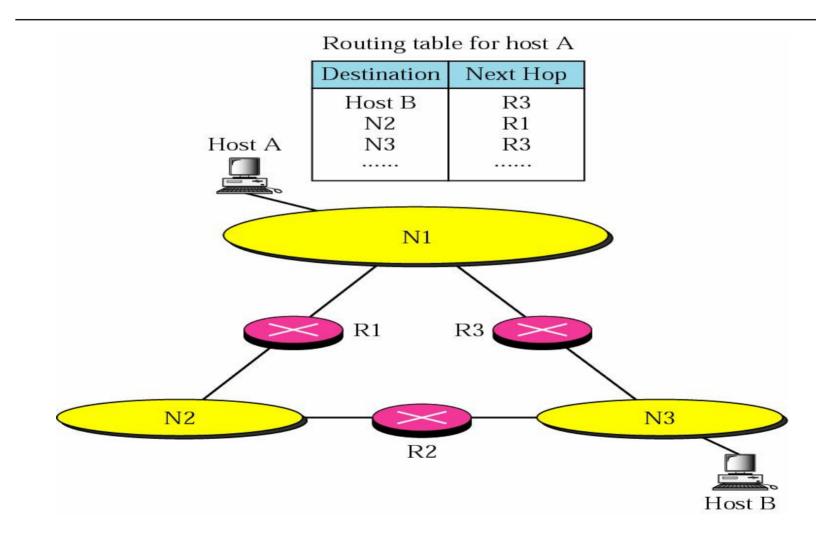
Next-Hop Routing



b. Routing tables based on next hop

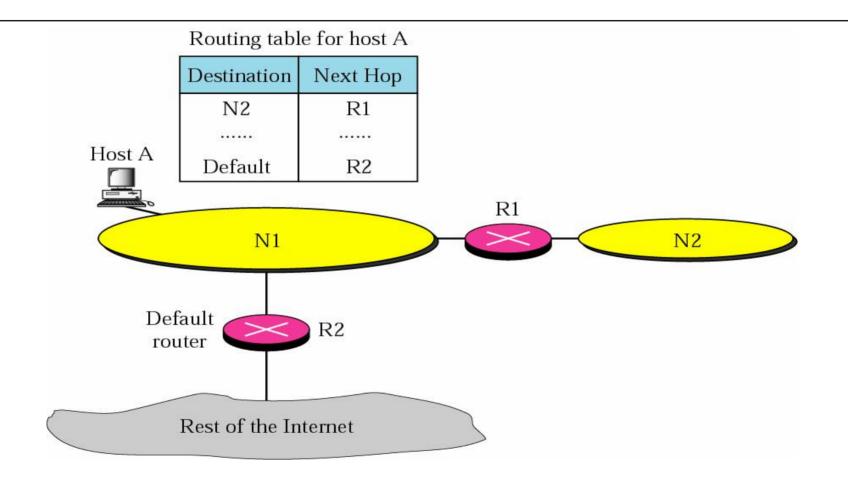
Network-Specific Routing

- □ Use only one entry to define *the address of the network itself, i.e., network address*
 - Instead of having an entry for every host connected to the same physical network


Network-Specific Routing

Host-Specific Routing

- The destination host address is given in the routing table
- □ The inverse of network-specific routing
- □ Not efficient for performance
 - But, in some occasions, the administrator wants to have more control over routing
 - □ Checking the route
 - Providing security


Host-Specific Routing

Default Routing

- Instead of listing all networks in the routing table
 - Just use one entry called *default*
 - Network address is 0.0.0.0

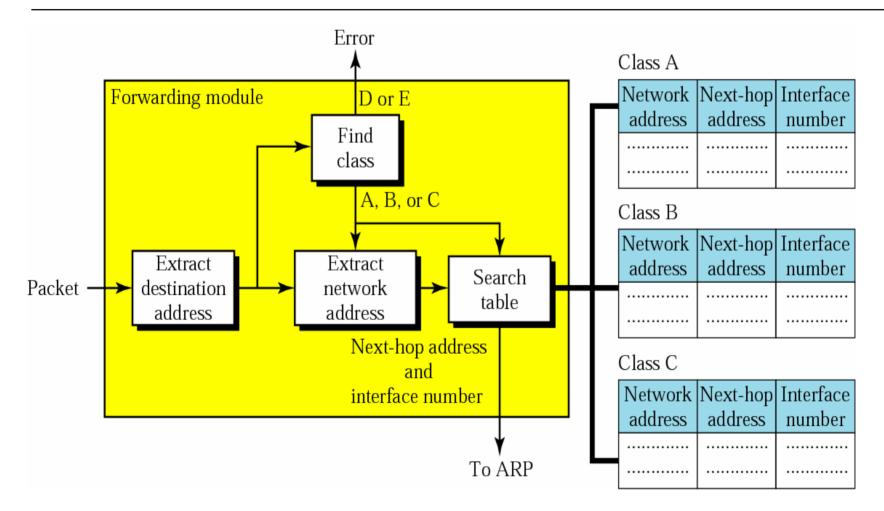
Default Routing

Forwarding with Classful Addressing

- □ The existence of a default mask in a classful address makes for forwarding process simple
- Discussions
 - Forwarding without subnetting
 - Forwarding with subnetting

Forwarding without Subnetting

- Most routers in classful addressing are not involved in subnetting
 - Since subnetting happens inside an organization
- A forwarding module would consists of three tables
 - One for each unicast class
 - If support multicast, add one more table to handle class D addresses

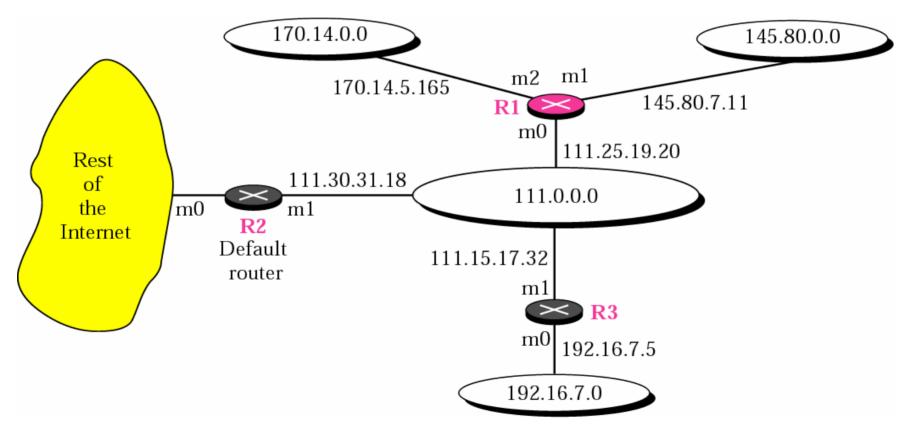

Forwarding without Subnetting (Cont.)

- □ Each routing table has a minimum of three columns
 - Network address of the destination network
 - **Tell us where the destination host is located**
 - □ Assume use the network-specific forwarding, not the host-specific forwarding
 - Next-hop address
 - Tell which router the packet must be delivered for an indirect delivery
 - **Empty for a direct delivery**

Interface number

Define the outgoing port from which the packet is sent out

Simplified Forwarding Module in Classful Address without Subnetting



Steps of Forwarding without Subnetting

- □ Extract the *destination address* of the packet
- □ Make a copy of the destination address and find the class of its address
 - Shift the copy of the address 28 bits to the right
 - The result is a 4-bit number used to determine the class
- □ Use the result in steps 2 to extract the *network address*
 - By *masking off* the rightmost 8, 16, or 24 bits since we have the mask now
- □ The *class of the address* and the *network address* are used to find out next-hop information
 - The class determines the table to be searched
 - Then search the table for the network address
 - □ If found, use the *next-hop address* and the *interface number*; else, use the *default route*
- □ Use the ARP module to find the *physical address* of the next router
 - By the next-hop address and the interface number

Example 1

□ Show the routing table for router R1

Example 1: Solution

- Following figure shows the three tables used by router R1.
- Some entries in the next-hop address column are empty
 - Because the destination is in the same network to which the router is connected (direct delivery).
 - Thus, the next-hop address used by ARP is simply the destination address of the packet

Table for Example 1

Class A

Network address	Next-hop address	Interface
111.0.0.0		m0

Class C

Network address	Next-hop address	Interface
192.16.7.0	111.15.17.32	m0

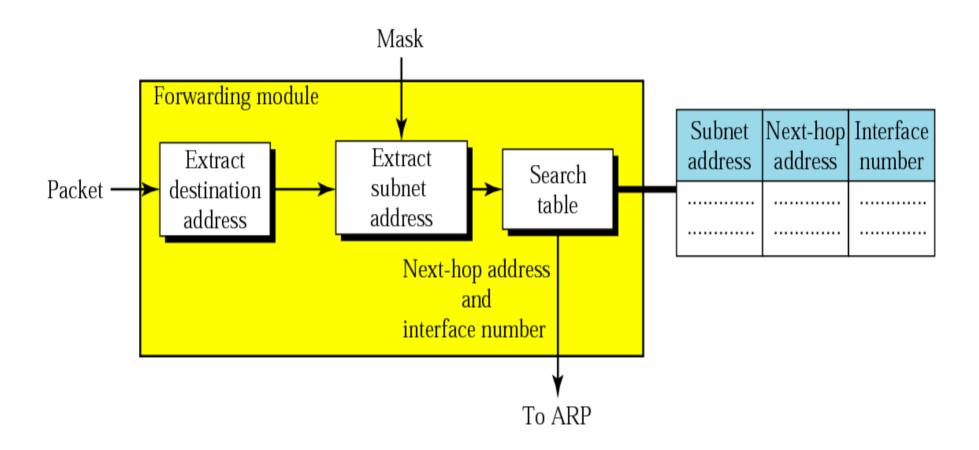
Class	В
-------	---

Network address	Next-hop address	Interface
145.80.0.0		m1
170.14.0.0		m2

Default: 111.30.31.18, m0

Example 2

- Router R1 in above figure receives a packet with destination address 192.16.7.14. Show how the packet is forwarded
- □ Solution
 - The destination address is 11000000 00010000 00000111 00001110.
 - A copy of the address is shifted 28 bits to the right. The result is 00000000 00000000 0000000 00001100 or 12.
 - □ The destination network is class C.
 - The network address is extracted by masking off the leftmost 24 bits of the destination address; the result is 192.16.7.0.
 - The table for Class C is searched and the network address is found in the first row.
 - The next-hop address 111.15.17.32. and the interface m0 are passed to ARP


Example 3

- □ Router R1 in above figure receives a packet with destination address 167.24.160.5. Show how the packet is forwarded.
- □ Solution
 - The destination address is 10100111 00011000 10100000 00000101.
 - A copy of the address is shifted 28 bits to the right. The result is 00000000 00000000 0000000 00001010 or 10.
 - $\Box \quad \text{The class is B.}$
 - The network address is 167.24.0.0.
 - The table for Class B is searched.
 - □ No matching network address is found.
 - □ The packet needs to be forwarded to the default router (the network is somewhere else in the Internet).
 - The next-hop address 111.30.31.18 and the interface number m0 are passed to ARP.

Forwarding with Subnetting

- In classful addressing, subnetting happens inside an organization
- □ The routers that handle subnetting
 - At the border of the organization site
 - Inside the site boundary
- Number of routing tables
 - If variable-length subnetting is used
 - □ We need several tables
 - Otherwise, only one is enough

Simplified Forwarding Module in Classful Address with Subnetting

Steps in Forwarding with Subnetting

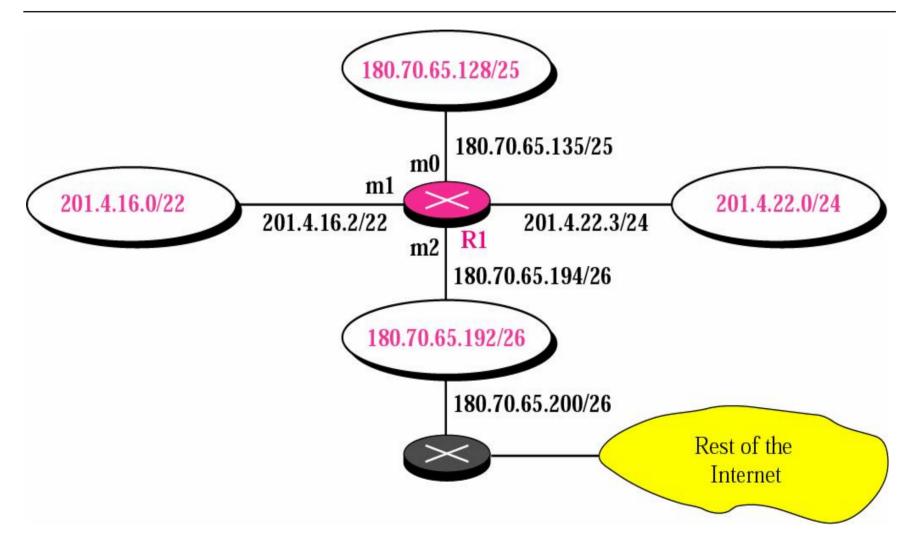
- □ Extract the *destination address* of the packet
- Extract the subnet address by the *destination address* and the *mask*
- □ Search the table by the *subnet address* to find the *next-hop address* and the *interface number*
 - If no mach, use the *default route*
- Pass the *next-hop address* and the *interface number* to the ARP

Following figure 6.11 shows a router connected to four subnets

- □ Note
 - The router is configured to apply the mask /18 to any destination address

- □ The router in above figure receives a packet with destination address 145.14.32.78. Show how the packet is forwarded
- □ Solution
 - The mask is /18.
 - After applying the mask, the subnet address is 145.14.0.0.
 - The packet is delivered to ARP with the next-hop address 145.14.32.78 and the outgoing interface m0

- A host in network 145.14.0.0 in above figure has a packet to send to the host with address 7.22.67.91.
 Show how the packet is routed
- □ Solution
 - The router receives the packet and applies the mask (/18).
 - $\Box \quad \text{The network address is } 7.22.64.0.$
 - The table is searched and the address is not found.
 - The router uses the address of the default router (not shown in figure) and sends the packet to that router


Forwarding with Classless Addressing

- □ In classless addressing
 - The whole address space is one entity
 - i.e., there is no classes
 - Thus, forwarding requires one row for each block
- However, cannot derive the network address from the destination address in the packet
- □ Solution
 - Include the *mask* (/n) of the corresponding block in the table
 - Thus, a classless routing table needs at least four columns

- Make a routing table for router R1 using the configuration in Figure 6.13
- □ Solution:

Mask	Network Address	Next Hop	Interface
/26	180.70.65.192	_	m2
/25	180.70.65.128	_	m0
/24	201.4.22.0	_	m3
/22	201.4.16.0	••••	m1
Default	Default	180.70.65.200	m2

Configuration for Example 7

Show the forwarding process if a packet arrives at R1 in above figure with the destination address 180.70.65.140

□ Solution: the router performs the following steps:

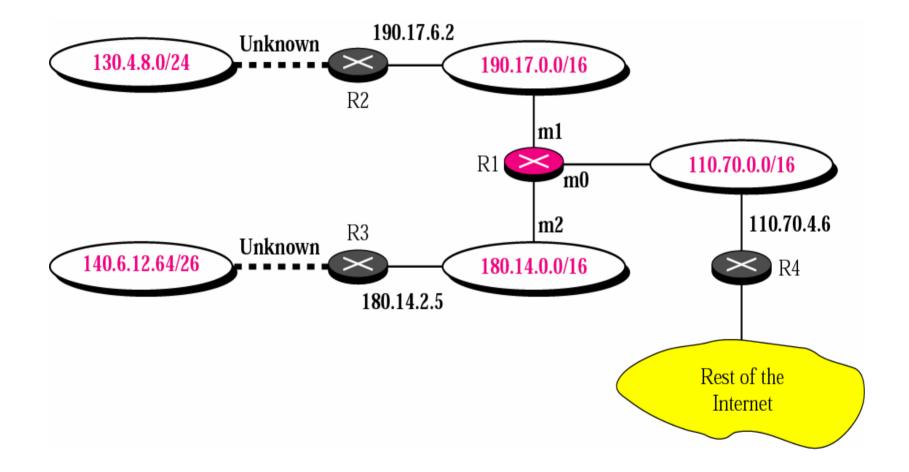
- The first mask (/26) is applied to the destination address.
 - □ The result is 180.70.65.128, which does not match the corresponding network address
- The second mask (/25) is applied to the destination address.
 - □ The result is 180.70.65.128, which matches the corresponding network address.
 - □ The *next-hop address* (the destination address of the packet in this case) and the *interface number m0* are passed to ARP for further processing

- □ Show the forwarding process if a packet arrives at R1 in above figure with the destination address 201.4.22.35
- □ Solution: the router performs the following steps
 - The first mask (/26) is applied to the destination address.
 - \Box The result is 201.4.22.0 => (X).
 - The second mask (/25) is applied to the destination address.
 - **The result is 201.4.22.0 \Rightarrow (X).**
 - The third mask (/24) is applied to the destination address.
 - \Box The result is 201.4.22.0 => (0)
 - □ The destination address of the package and the interface number m3 are passed to ARP

- Show the forwarding process if a packet arrives at R1 in above figure with the destination address 18.24.32.78
- □ Solution
 - This time all masks are applied to the destination address, but no matching network address is found.
 - When it reaches the end of the table, the module gives the next-hop address 180.70.65.200 and interface number m2 to ARP.
 - This is probably an outgoing package that needs to be sent via the *default router*, to some place else in the Internet

□ The routing table for router R1 is given in Table 6.2. Can we draw its topology?

Mask	Network Address	Next-Hop Address	Interface Number
/26	140.6.12.64	180.14.2.5	m2
/24	130.4.8.0	190.17.6.2.0	m1
/16	110.70.0.0		m0
/16	180.14.0.0		m2
/16	190.17.0.0		m1
Default	Default	110.70.4.6	m0

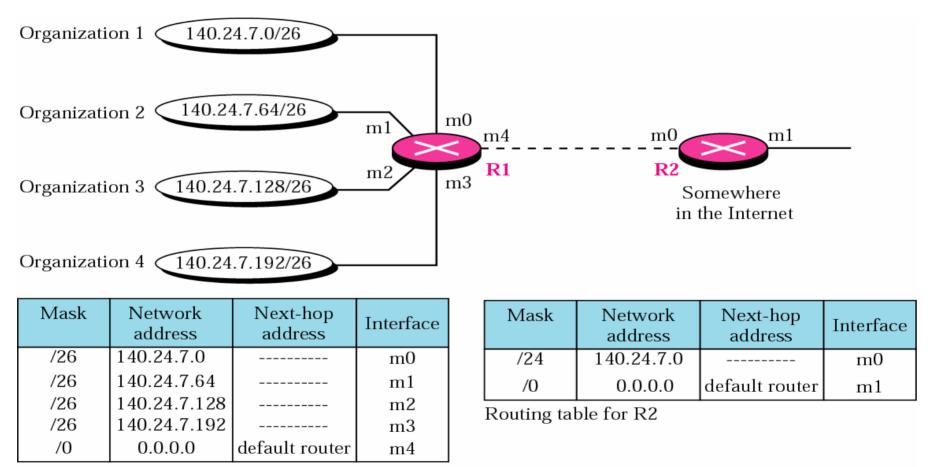

Example 11: Solution

- We know some facts but we don't have all for a definite topology.
- \square Router R1 has three interfaces: m0, m1, and m2.
- □ There are three networks directly connected to router
 - **110.70.0.0/16, 180.14.0.0/16, 190.17.0.0/16**
- □ There are two networks indirectly connected to R1
 - 140.6.12.64/26 and 130.4.8.0/24
- □ There must be at least three other routers involved
 - From the next-hop column

Example 11: Solution (Cont.)

- One router, the default router, is connected to the rest of the Internet.
- □ However,
 - We do not know if network 130.4.8.0 and 140.6.12.64 is directly connected to router R2 and R3 or through a point-to-point network (WAN) and another router.
- □ Figure 6.14 shows our guessed topology

Guessed topology for Example 6


Address Aggregation

- □ In classful address
 - There is only one entry for each site
 - Even this site is subnetted
- □ In classless address
 - The number of entries will increase
 - □ Since classless addressing is to divide up the whole address space into manageable blocks
- □ Problem:
 - Vast routing table and increased overhead to search table

Address Aggregation (Cont.)

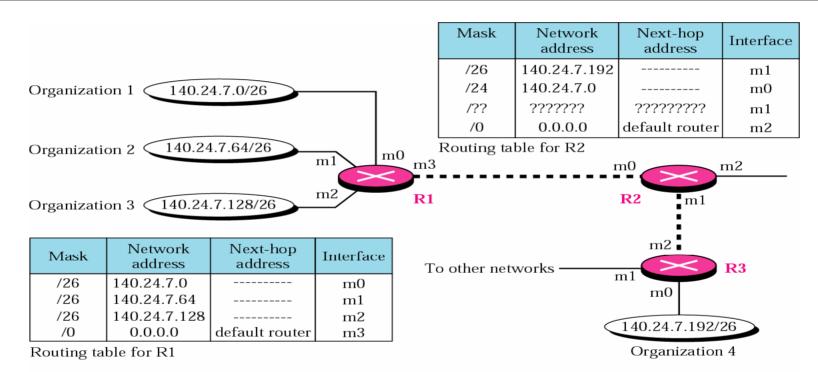
- □ Solutions: *address aggregation*
- □ In the following figure
 - R1 has a longer routing table
 - □ Connect four organization
 - R2 has a small routing table
 - □ Any packet with destination 140.24.7.0~140.24.7.255 is sent out from interface m0
 - Regardless of the organization number
 - □ Called *address aggregation*
 - The blocks of addresses for four organization are aggregated into one large block
 - We do not have to specify each organization with an entry

Address aggregation

Routing table for R1

Longest Mask Matching

- However, if organization 4 is not geographically close to the other three routers
 - Can we still use the address aggregation and assign 140.24.7.192/26 to organization 4?
- □ Ans: Yes
 - Since routing in classless addressing uses *longest mask matching*


Longest mask matching

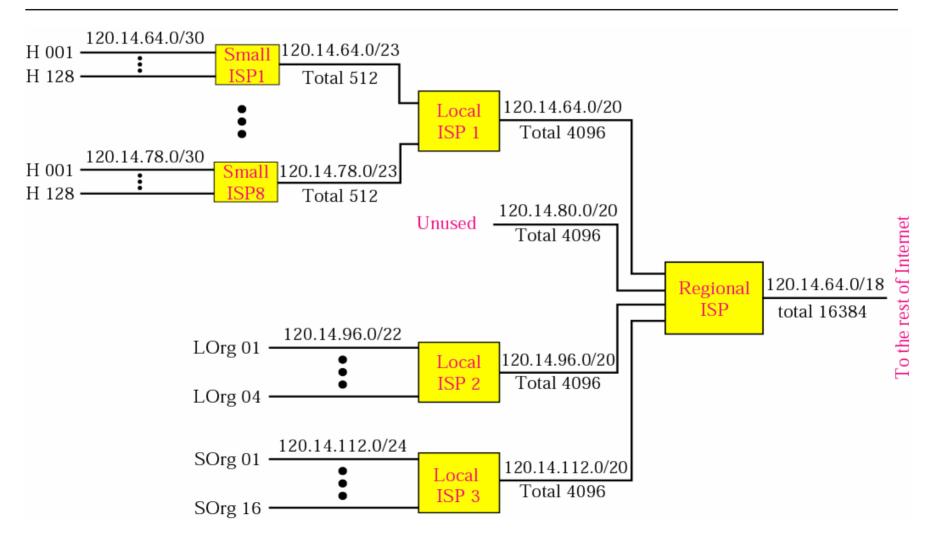
- Routing table is sorted from the longest mask to the shortest mask
- If there are three masks, /27, /26, /24
 - \square /27 is the first entry and /24 is the last one

Longest Mask Matching (Cont.)

- □ Example, in the following figure
 - Organization 4 is moved
 - If an packet with destination address 140.24.7.200 is arrived at R2
 - $\Box \quad \text{The first mask at router R2 is applied} \Rightarrow \text{match}$
 - □ Route from interface m1 and reach organization 4
 - If not use *longest mask matching*
 - □ Apply the /24 mask would result in the incorrect routing
- □ Thus
 - We can still aggregate organization 1~3 into a large block while still assign 140.24.7.192/26 to organization 4

Longest Mask Matching (Cont.)

Mask	Network address	Next-hop address	Interface
/26	140.24.7.192		m0
/??	???????	??????????	m1
/0	0.0.0	default router	m2


Routing table for R3

Hierarchical Routing

- □ To further reduce the size of routing table
 - Create a sense of hierarchy in the Internet architecture and routing tables
- □ Internet is divided into international and national ISP
 - National ISP are divided into regional ISPs
 - Regional ISP are divided into local ISPs
- □ If a local ISP divide its block (a.b.c.d/n) into smaller blocks
 - However, to the rest of the Internet, routers do not know such a division
 - Thus, all customers of the local ISP are still defined as a.b.c.d/n to the rest of Internet

- □ Consider the following figure
 - A regional ISP is granted 16384 addresses starting from 120.14.64.0/18
 - The regional ISP has decided to divide this block into four subblocks, each with 4096 addresses.
 - Three of these subblocks are assigned to three local ISPs,
 - The second subblock is reserved for future use

Hierarchical Routing with ISPs

Example 12 (Cont.)

- The first local ISP has divided its assigned subblock into 8 smaller blocks
 - Assigned each to a small ISP.
 - Each small ISP provides services to 128 households (H001 to H128), each using four addresses.
- □ The second local ISP has divided its block into 4 blocks
 - Assigned the addresses to 4 large organizations (LOrg01 to LOrg04).
- □ The third local ISP has divided its block into 16 blocks
 - Assigned each block to a small organization (SOrg01 to SOrg15).

Example 12 (Cont.)

- □ There is a sense of *hierarchy* in this configuration.
 - All routers in the Internet send a packet with destination address 120.14.64.0 to 120.14.127.255 to the regional ISP.
 - The regional ISP sends every packet with destination address 120.14.64.0 to 120.14.79.255 to Local ISP1.
 - Local ISP1 sends every packet with destination address 120.14.64.0 to 120.14.64.3 to H001.

Geographical Routing

- □ To decrease the size of the routing table even further
 - Extend hierarchical routing to include geographical routing
- Divide the entire address space into a few large blocks
 - A block to North America
 - A block to Europe
 - A block to Asia
 - A block to Africa
- □ The routers of ISP outside of Europe have only one entry for packets to Europe in their routing table

Routing Table Search Algorithm

- The algorithms used in *search* routing tables in classful addressing must be changed for classless addressing
- The algorithm used for *updating* routing tables in classful addressing must be changed for classless addressing
 - Mentioned in Chapter 14

Searching in Classful Addressing

- □ The routing table in classful addressing is organized as a list
- □ However, to make search easier, the routing table can be divided into three buckets (areas)
 - One for each class
- □ When a packet arrives, applies the *default mask* to find the corresponding bucket (class A, B, or C)
 - Notably, from a address, we can derive which class it belongs to

Searching in Classless Addressing

- □ In classless routing, we can also use buckets
 - However, 32 buckets are used instead of three
 Each buckets corresponding to each prefix length
 - When a packet arrives, try the longest prefix (/32), then the next prefix (/31) and so on until matched


□ Longest match method

- However, this search method would also take quite a long time
 - Use other data structures such as tree or binary tree

Combination

- Modern routers are all based on classless addressing
 - All include mask in the routing table
 - The classful addressing is treated as a special case of classless addressing

□ Use the mask /24, /16, /8

Static Versus Dynamic Routing Table

- □ Static Routing Table
 - The entries are entered *manually*
 - Cannot be updated unless manually altered by administrator
- Dynamic Routing Table
 - Update periodically using dynamic routing protocol
 - □ RIP, OSPF, or BGP
 - If a router shutdown or a link is broken
 - □ Update the tables accordingly

Routing Table

- As mentioned before, routing has a minimum of three columns
 - However, some of today's routers have even more columns
 - Vendor dependent
- □ Common fields in modern routing table
 - Mask, network address, next-hop address, interface, flags, reference count, use
- □ **Mask**: define the mask applied for the entry
- □ Network address:
 - If host-specific routing, define the address of the destination host

Routing Table (Cont.)

Next-hop address

- The address of the next-hop router
- □ Interface
 - The name of interface

Reference count

- The number of *users* that are using this route at any moment
- □ Use
 - The number of *packets* transmitted through this router for the corresponding destination

Mask	Network address	Next-hop address	Interface	Flags	Reference count	Use

Routing Table (Cont.)

- □ Flags
 - U (Up): the router is up and running.
 - □ If not present, cannot forward packet to this router
 - G (Gateway): destination is in another network and use *indirect delivery*
 - □ If not present, use direct delivery
 - H (Host-specific): the entry in the destination field is host-specific address
 - If not present, destination field is network-specific address

Routing Table (Cont.)

- □ Flags
 - D (Added by redirection): routing information for this destination has been *added* by a *redirection message* from ICMP.
 - M (Modified by redirection): routing information for this destination has been *modified* by a *redirection message* from ICMP.
 - Discuss in Chapter 9

Routing Table

Mask	Destination address	Next-hop address	Flags	Reference count	Use	Interface
255.0.0.0	124.0.0.0		UG 	4 	20 	m2

<u>Flags</u>

- U The router is up and running.
- G The destination is in another network.
- H Host-specific address.
- D Added by redirection.
- M Modified by redirection.

Example 13

- □ In UNIX or LINUX, *netstat* is used to find the contents of a routing table for a host or router
- □ The following shows the listing of the contents of the default server.
 - Note that this is a routing table for a host, not a router.
 - A host also needs a routing table

Example 13 (Cont.)

\$ netstat -rn Kernel IP routing table

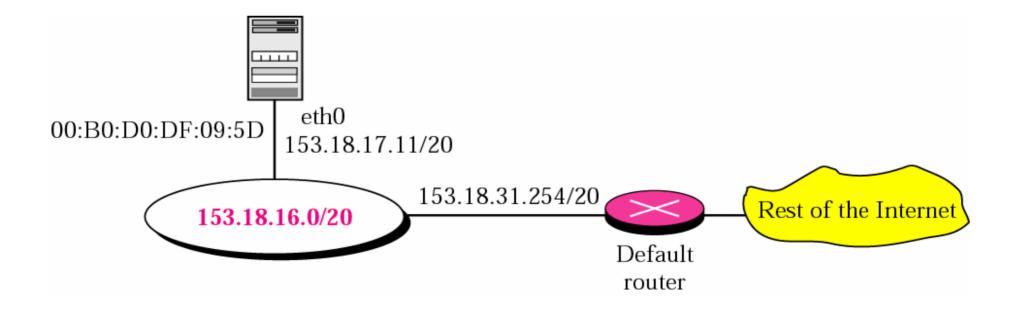
Destination	Gateway	Mask	Flags	Iface
153.18.16.0	0.0.0.0	255.255.240.0	U	eth0
127.0.0.0	0.0.0.0	255.0.0.0	U	lo
0.0.0	153.18.31.	254 0.0.0.0	UG	eth0.

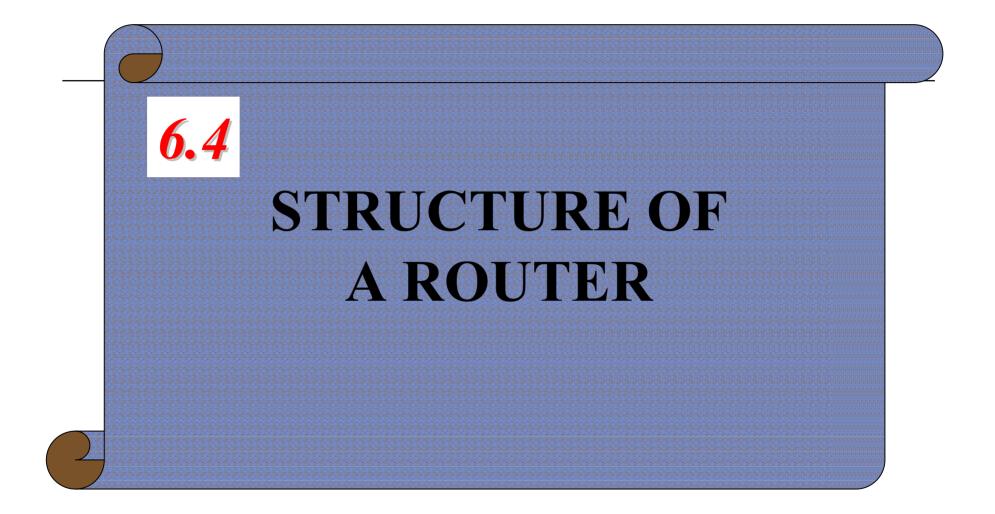
- $\Box \quad Gateway = the address of next hop$
 - 0.0.0.0 = direct delivery
- **G** in Flags means the destination is reached through a router
- □ Interface *lo* is a virtual loopback interface

Example 13 (Cont.)

- More information about the IP address and physical address of the server
 - Can be found using the *ifconfig* command on the given interface (eth0)

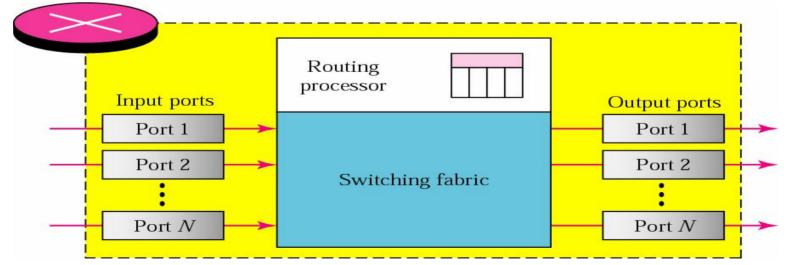
```
      $ ifconfig eth0

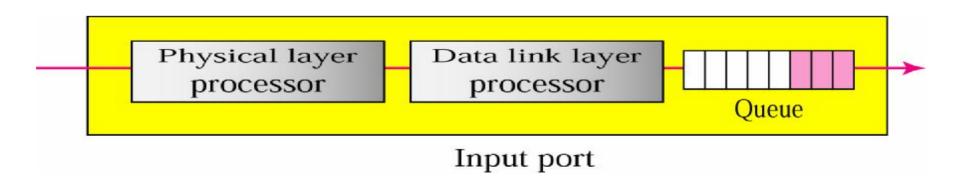

      eth0 Link encap:Ethernet HWaddr 00:B0:D0:DF:09:5D


      inet addr:153.18.17.11
      Bcast:153.18.31.255

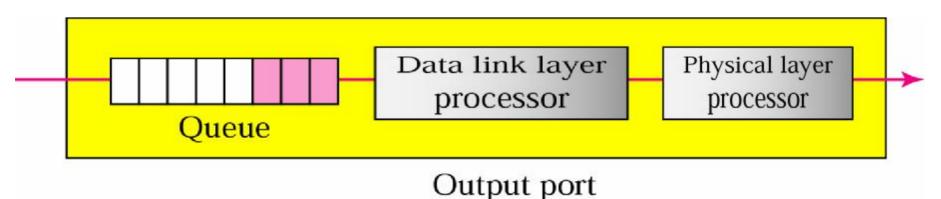
      ....
```

Example 13 (Cont.)


□ From the above information, we can deduce the configuration of the server as shown below


Router Components

- □ A router has four components
 - Input port
 - Output port
 - Routing processor
 - Switching fabric

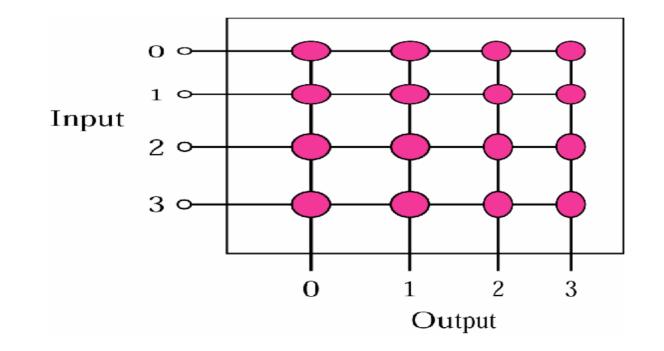

Input Port

- □ Perform the physical and data link layer functions
 - Bits are constructed from the received signal
 - Packet is decapsulated from the frame
 - Errors are detected and corrected if possible
 - Buffered in queues before packets are directed to switching fabric

Output Ports

- Perform the same functions as the input port, but in the reverse order
 - First, the outgoing packets are queued
 - Then the packet is encapsulated in a frame
 - Finally, the physical and MAC layer functions are applied to send the frame

Routing Processor

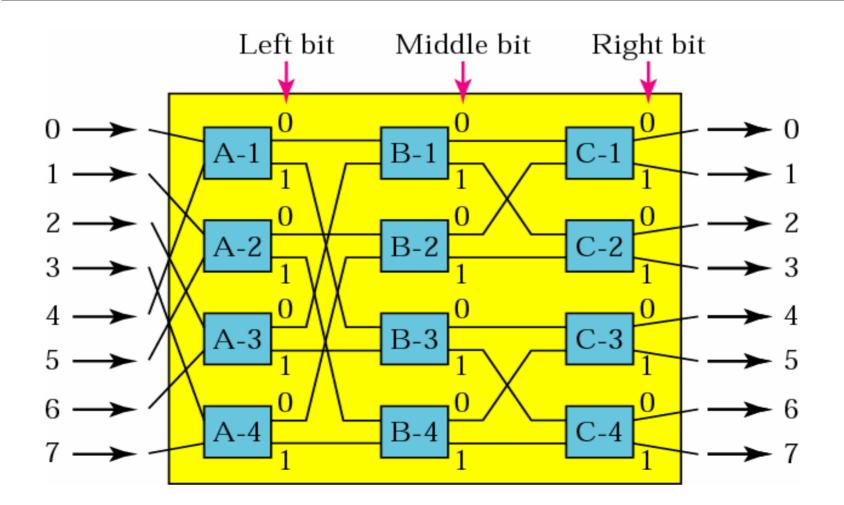

- Perform the functions of the network layer
- □ Perform *table lookup*
 - Search routing table to find the address of the next hop and the output port number

Switching Fabrics

- □ Most difficult task in a router
 - Move the packet from the input queue to the output queue
 - The speed affects
 - □ The size of the input/output queue
 - □ The overall delay in packet delivery
- □ Solution: switch fabrics
- □ Some of the fabrics
 - Crossbar Switch
 - Banyan Switch
 - Batcher-Banyan Switch

Crossbar Switch

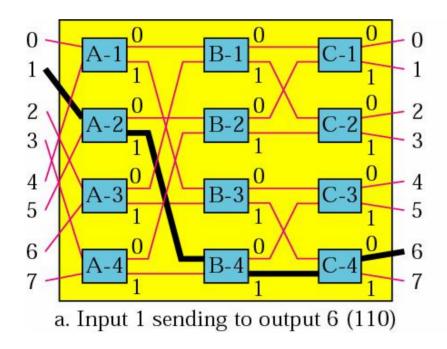
Connect *n* inputs to *n* output in a grid
Each *crosspoint* has a electronic microswtich

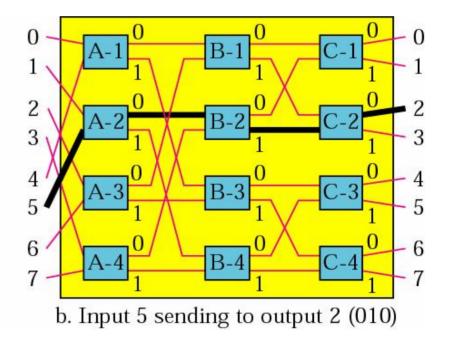


Banyan Switch

□ A *multistage* switch

- A *microswitches* at each stage that route packets based on the output port represented as a *binary string*
- For *n* input and *n* output, we have $log_2(n)$ stages
 - □ At each stage, we need n/2 microswitches
 - □ See the following figure
 - The number of stages is $\log_2(8) = 3$
- The first stage routes packets based on the highest bit of the binary string, and so on
- Elegant design that every input port can connect to any one output port

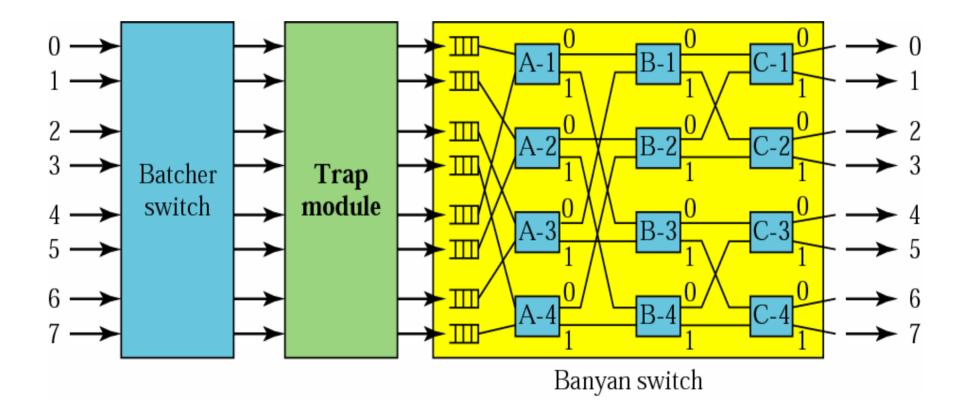

A Banyan Switch



Banyan Switch (Cont.)

- □ In the next slide
 - A packet has arrived at input port 1 and go to output port 6 (110 in binary)
 - First microswtich (A-2) routes the packet based on the first bit (1)
 - Second microswtich (B-2) routes the packet based on the second bit (1)
 - Third microswtich (C-2) routes the packet based on the third bit (0)

Examples of Routing in a Banyan Switch


Batcher-Banyan Switch

- □ Problem with the banyan switch
 - The possibility of internal collisions even when two packets are not heading for the same output port
- One solutions: Batcher Switch
 - Sort the incoming packets according to their final destination

Batcher-Banyan Switch (Cont.)

- Batch-Banyan Switch
 - A combination of batch switch and banyan switch
 - A trap is added between batch switch and banyan switch
 - Prevent packets with the same output destination from passing the banyan switch simultaneously
 - Only one packet for each destination is allowed at each tick

Batcher-Banyan Switch

