
Chapter 12

Transmission Control
Protocol (TCP)

Objectives:
o Upon completion you will be able to:

n Be able to name and understand the services offered by
TCP

n Understand TCP’s flow and error control and
congestion control

n Be familiar with the fields in a TCP segment
n Understand the phases in a connection-oriented

connection
n Understand the TCP transition state diagram
n Be able to name and understand the timers used in TCP
n Be familiar with the TCP options

Outline
o TCP Services
o TCP Features
o Segment
o A TCP Connection
o State Transition Diagram
o Flow Control
o Error Control
o Congestion Control

Outline (Cont.)
o TCP Timers
o Options
o TCP Package

Figure 12-1

Position of TCP in TCP/IP Protocol Suite

The McGraw-Hill Companies, Inc., 2000

Introduction
o TCP

n Like UDP, create a process-to-process (program-to-
grogram) communication
o Port numbers

n A connection-oriented protocol
o Create a virtual connection between two TCPs to send data

n Add flow and error-control mechanisms at the transport
layer
o For flow control: TCP uses a sliding window protocol
o For error control: TCP uses the acknowledge packet, time-out,

and retransmission mechanisms

12.1 TCP SERVICES

We explain the services offered by TCP to the processes at the We explain the services offered by TCP to the processes at the
application layer.application layer.

The topics discussed in this section include:The topics discussed in this section include:

ProcessProcess--toto--Process CommunicationProcess Communication
Stream Delivery ServiceStream Delivery Service
FullFull--Duplex CommunicationDuplex Communication
ConnectionConnection--Oriented ServiceOriented Service
Reliable ServiceReliable Service

TCP Services
o TCP provides services to the processes at the

application layer
n Process-to-Process Communication
n Stream Delivery Service
n Full-Duplex Service
n Connection-Oriented Service
n Reliable Service

Process-to-Process Communication
o Like UDP, TCP provides process-to-process

communication using port numbers

Port Number
o Client’s port number
n Chosen randomly by the TCP software running

on the local host
n Called ephemeral port number

o Server’s port number
n Define itself with a port number
n Called well-known port numbers

Figure 12-3

Port Numbers

The McGraw-Hill Companies, Inc., 2000

Well-Know Ports Used by TCP

File Transfer Protocol (control connection)FTP, Data21
File Transfer Protocol (data connection)FTP, Data20
Return a string of charactersChargen19
Return a quote of the dayQuote17
Return the data and the timeDaytimes13
Active usersUsers11
Discards any datagram that is receivedDiscard9

Echoes a received datagram back to the
sender

Echo7
DescriptionProtocolPort

Well-Know Ports Used by TCP

Hypertext Transfer ProtocolHTTP80

Remote Protocol CallRPC111

FingerFinger79

Bootstrap BOOTP67

Simple Mail Transfer ProtocolDNS53

Simple Mail Transfer ProtocolSMTP25

Terminal NetworkTelnet23

DescriptionProtocolPort

As we said in Chapter 11, in UNIX, the well-known ports are
stored in a file called /etc/services. Each line in this file gives
the name of the server and the well-known port number. We
can use the grep utility to extract the line corresponding to the
desired application. The following shows the ports for FTP.

Example 1

$ grep ftp /etc/services

ftp-data 20/tcp
ftp-control 21/tcp

Stream Delivery Service
o UDP treats each chunk independently
n No any connection between the chucks

o In contrast, TCP allow the data be
delivered/received as a stream of bytes

Figure 12-4

Stream Delivery

The McGraw-Hill Companies, Inc., 2000

Stream Delivery Service (Cont.)
o However, the sending and receiving speed

may not be the same
n TCP needs buffers for storage

o Two buffers in TCP
n Sending buffer and receiving buffer, one for each

connection
n Also used in flow- and error-control mechanisms

Figure 12-5

Sending and Receiving Buffers

The McGraw-Hill Companies, Inc., 2000

Sending Buffers
o The sending circular buffer has three types of

sections
n White section: empty location

o Can be filled by the sending process
n Gray section: hold bytes that have been sent but not yet

acknowledged
o TCP keeps these bytes until it receives acknowledges

n Color section: bytes to be sent by the sending TCP
o TCP may be able to send only part of this colored section

n The slowness of the receiving process
n The congestion in the network

Receiving Buffer
o The receiving circular buffer is divided into

two areas
n White area:

o Empty locations to be filled

n Colored area:
o Contain received bytes that can be consumed by the

receiving process

Segments
o TCP groups a number of bytes together into a packet

called a segment
n A TCP packet is called a segment
n TCP adds a header to each segment
n Then, the segments are encapsulated in an IP datagram

o Note: terms
n UDP Datagram, TCP Segment
n IP Datagram
n MAC Frame

Figure 12-6

TCP Segments

The McGraw-Hill Companies, Inc., 2000

Full-Duplex Communication
o TCP offers full-duplex service
n Data can flow in both directions at the same time

n Each TCP has a sending and receiving buffer and
segments are sent in both direction

Connection-Oriented Service
o TCP is a connection-oriented protocol
n However, the connection is virtual, not a physical

connection

n Each TCP segment may use a different path to
reach the destination

Reliable Service
o TCP uses an acknowledge mechanism to

check the safe and sound arrival of data

12.2 TCP FEATURES

To provide the services mentioned in the previous section, TCP hTo provide the services mentioned in the previous section, TCP has as
several features that are briefly summarized in this section. several features that are briefly summarized in this section.

The topics discussed in this section include:The topics discussed in this section include:

Numbering System Numbering System
Flow ControlFlow Control
Error ControlError Control
Congestion ControlCongestion Control

Numbering Bytes
o Although TCP use segments for transmission and

reception
n There is no field for a segment number in the segment

header, i.e., TCP header

o TCP uses sequence number and acknowledgement
number to keep track of the segment being
transmitted or received
n Notably, these two fields refer to the byte number, not the

segment number

Byte Numbers
o TCP numbers all data bytes that are

transmitted in a connection
o The numbering does not necessarily start from

0
n It starts randomly
n Between 0 and 2^32 – 1 for the number of the

first byte
n Byte numbering is used for flow and error control

The bytes of data being transferred The bytes of data being transferred
in each connection are numbered by TCP. in each connection are numbered by TCP.

The numbering starts with The numbering starts with
a randomly generated number.a randomly generated number.

The McGraw-Hill Companies, Inc., 2000

Sequence Number
o TCP assigns a sequence number to each

segment that is being sent

o The sequence number for each segment is the
number of the first byte carried in that
segment

The value of the sequence number field in
a segment defines the number

of the first data byte
contained in that segment.

The McGraw-Hill Companies, Inc., 2000

Suppose a TCP connection is transferring a
file of 5000 bytes. The first byte is numbered
10001.

What are the sequence numbers for each
segment if data is sent in five segments, each
carrying 1000 bytes?

Example 2

Solution
• The following shows the sequence number

for each segment:

Segment 1➡ Sequence Number: 10,001 (range: 10,001 to 11,000)

Segment 2➡ Sequence Number: 11,001 (range: 11,001 to 12,000)

Segment 3➡ Sequence Number: 12,001 (range: 12,001 to 13,000)

Segment 4➡ Sequence Number: 13,001 (range: 13,001 to 14,000)

Segment 5➡ Sequence Number: 14,001 (range: 14,001 to 15,000)

o Imagine a TCP connection is transferring a
file of 6000 bytes.
n The first byte is numbered 10010

o What are the sequence numbers for each
segment if data is sent in five segments with
n The first four segments carrying 1,000 bytes
n The last segment carrying 2,000 bytes?

ExampleExample

SolutionSolution

The following shows the sequence number for
each segment:

Segment 1 è 10,010 (10,010 to 11,009)

Segment 2 è 11,010 (11,010 to 12,009)

Segment 3 è 12,010 (12,010 to 13,009)

Segment 4 è 13,010 (13,010 to 14,009)

Segment 5 è 14,010 (14,010 to 16,009)
The McGraw-Hill Companies, Inc., 2000

Acknowledgment Number
o Communication in TCP is full duplex
n Both parties can send and receive data at the same

time in a connection
o Each party numbers the bytes, usually with a

different starting byte number
n Sequence number: the number of the first byte

carried by the segment
n Acknowledgment number: the number of the next

byte that the party expects to receive

Acknowledgment Number (Cont.)
o Acknowledgment number is cumulative
o For example, if a party uses 5,643 as an

acknowledgment number
n It has received all bytes from the beginning up to

5,642
n Note that, this does not mean that the party has

received 5642 bytes
o The first byte number does not have to start from 0

The value of the acknowledgment field in a The value of the acknowledgment field in a
segment defines the number of the segment defines the number of the

next byte a party expects to receives. next byte a party expects to receives.
The acknowledgment number is cumulative.The acknowledgment number is cumulative.

The McGraw-Hill Companies, Inc., 2000

Flow Control
o The receiver controls how much data are to be

sent by the sender
n Prevent the receiver from being overwhelmed

with data

o The numbering system allow TCP to use a
byte-oriented flow control

Error Control
o TCP implements an error control mechanism
n To provide reliable service

n Also byte-oriented

Congestion Control
o TCP takes into account congestion in the

network

o Thus, the amount of data sent by a sender is
controlled both by
n The receiver (flow control)
n The level of congestion in the network

12.3 SEGMENT

A packet in TCP is called a segmentA packet in TCP is called a segment

The topics discussed in this section include:The topics discussed in this section include:

FormatFormat
EncapsulationEncapsulation

Figure 12-19

TCP Segment Format

The McGraw-Hill Companies, Inc., 2000

TCP Segment Format
o Source port address: 16-bit
o Destination port address: 16-bit
o Sequence number: 32-bit

n The first byte number in this segment
n In connection establishment, each party randomly

generate an initial sequence number (ISN)
o Usually different in each direction

o Acknowledgment number: 32-bit
n The byte number that the receiver expects

o If received byte number x, ack. number is x+1
n Acknowledgment and data can be piggybacked together

TCP Segment Format (Cont.)
o Header length: 4-bit
n The number of 4-byte words in the TCP header
n Value of this field is between 5 and 15

o TCP header is between 20-60 bytes

o Reserved: 6-bit
o Reserved for future use

o Control: 6-bits

Figure 12-20

Control Field

The McGraw-Hill Companies, Inc., 2000

TCP Segment Format (Cont.)
o Control
n URG: urgent pointer is valid
n ACK: acknowledgment field is valid
n PSH: push the data
n RST: the connection must be reset
n SYN: Synchronization sequence numbers during

connection
n FIN: terminate the connection

TCP Segment Format (Cont.)
o Window size: 16-bit

n Define the size of the receiving window, in bytes
o Determined by the receiver

n The maximum window size is 2^16 = 65535
o Checksum: 16-bit

n Follow the same procedure as UDP
n Checksum for TCP is mandatory (UDP is optional)

o Urgent pointer: 16-bit
n Valid only if the urgent bit is set
n Used when the segment contains urgent data

o Options: 0~40 bytes

Pseudoheader added to the TCP datagram

Encapsulation
o A TCP segment is encapsulated in an IP

datagram
n Which in turn is encapsulated in a data-link frame

12.4 A TCP CONNECTION

TCP is connectionTCP is connection--oriented. A connectionoriented. A connection--oriented transport protocol oriented transport protocol
establishes a virtual path between the source and destination. Aestablishes a virtual path between the source and destination. All of the ll of the
segments belonging to a message are then sent over this virtual segments belonging to a message are then sent over this virtual path. A path. A
connectionconnection--oriented transmission requires three phases: connection oriented transmission requires three phases: connection
establishment, data transfer, and connection termination.establishment, data transfer, and connection termination.

The topics discussed in this section include:The topics discussed in this section include:

Connection EstablishmentConnection Establishment
Data TransferData Transfer
Connection TerminationConnection Termination
Connection ResetConnection Reset

Introduction
o TCP’s connection-oriented transmission

requires three phases
n Connection establishment

o Three-way handshaking
n Data transfer
n Connection termination

o Four-way handshaking

Connection Establishment
o Four actions are taken between host A and B

n Host A sends a segment to announce its wish for
connection and includes its initialization information

n Host B sends a segment to acknowledge the request of A
n Host B sends a segment that includes its initialization

information
n Host A sends a segment to acknowledge the request of B

o However
n Step 2 and 3 can be combined into one step

Connection Establishment
o Example, a client wants to make a connection

to a server
n Server performs the passive open

o Tell TCP that it is ready to accept a connection

n Client performs the active open
o Tell TCP that it needs to be connected to the server

Three-way handshaking
1. The client sends the first segment, a SYN segment

n Set the SYN flag
n The segment is used for synchronization of sequence number

o Initialization sequence number (ISN)
n If client wants to define MSS, add MSS option
n If client needs a larger window

o Define the window scale factor option
n Does not contain any acknowledgment number
n Does not define the window size either

o A window size makes sense only when a segment includes an
acknowledgment

n Although a control segment and does not carry data
o But consumes one sequence number

A SYN segment cannot carry data, but
it consumes one sequence number.

Note:Note:

Three-way handshaking (Cont.)
2. The server sends a second segment, a SYN + ACK

segment
n Set the SYN and ACK flag
n Acknowledge the receipt of the first segment using the

ACK flag and acknowledgment number field
o Acknowledgment number = client initialization sequence number

+ 1
o Must also define the receiver window size for flow control

n SYN information for the server
o Initialization sequence number from server to client
o Window scale factor if used
o MSS is defined

A SYN + ACK segment cannot carry
data, but does consume one

sequence number.

Note:Note:

Figure 12-28

Three-way Handshaking

The McGraw-Hill Companies, Inc., 2000

8001

Three-way handshaking (Cont.)
3. The client sends the third segment, ACK segment

n Acknowledge the receipt of second segment
o ACK flag is set

n Acknowledgement number = server initialization sequence number
+ 1

o Must also define the server window size
n Set the window size field

o The sequence number is the same as the one in the SYN segment
n ACK segment does not consume any sequence number

n However, in some implementation, data can be sent with
the third packet
o Must have a new sequence number showing the byte number of

the first byte in the data

An ACK segment, if carrying no data,
consumes no sequence number.

Note:Note:

Connection Establishment (Cont.)
o Active open
n The side that sends the first SYN

o Passive open
n The side that receives this SYN and sends the next

SYN
o Simultaneous open
n Both processes issue an active open

o But only a single connection is established (discussed
later)

SYN Flooding Attack
o A malicious attacker sends a larger number of

SYN segment to a server
n Each with a fading source IP address

o The server will runs out of resource and may
crash
n Denial of service attack

SYN Flooding Attack (Cont.)
o Possible solutions
n Impose a limit of connections requested during a

period of time
n Filter out datagrams coming from unwanted

source addresses
n Postpone resource allocation until the entire

connection is set up
o SCTP uses strategy, called cookie

Data Transfer
o Bidirectional data transfer takes place after

connection is established
n Both parties can send data and acknowledgments

in both direction

n The acknowledgment can be piggybacked with
the data

Example: a Data Transfer

10001

Pushing Data
o In TCP, both sender and receiver have buffers

to hold data
n In sender, application data to be sent is temporary

hold in the buffer
n In receiver, receiving data is temporary hold in

the buffer
n Thus, for applications, they may encounter

delayed transmission and reception

Pushing Data (Cont.)
o In some cases, delayed transmission and

reception may not be acceptable
o TCP thus support PUSH operation
n Sending TCP must create a segment and send the

data immediately
o Must not wait for the window to be filled

n Receiving TCP must deliver data to the application
immediately
o Does not wait for more data to come

Urgent Data
o TCP is a stream-oriented protocol
n Data is presented as a stream of bytes

o In some cases, an application needs to send
urgent data
n Sender wants a piece of data to be read our of

order by the receiving application

Urgent Data (Cont.)
o Solution: send a segment with URG bit set
n Sender creates a segment, insert the urgent data at

the beginning of the segment and sends the
segment with the URG bit set

n The urgent pointer field defines the end of the
urgent data and the start of normal data

Connection Termination
o Two options
n Three-way handshaking

n Four-way handshaking with a half-close option

Three-Way Handshaking
1. Client TCP sends the FIN segment
n FIN flag is set

n Two choices
o FIN segment is only a control segment

n Consume only one sequence number

o FIN segment can include the last chunk of data sent
by the client

Three-Way Handshaking (Cont.)
2. The server TCP sends the FIN+ACK segment

n ACK bit is set
o Confirm the receipt of FIN segment

n FIN bit is set
o Announce the closing of the connection in the other direction

n Two choices
o FIN+ACK segment is only a control segment

n Consume only one sequence number
o FIN +ACK segment can include the last chunk of data sent by

the client

Three-Way Handshaking (Cont.)
o Client TCP sends the last ACK segment
n ACK bit is set

o Confirm the receipt of the FIN+ACK segment for the
TCP server

n This segment cannot carry data and consume no
sequence number
o No further response!

Figure 12-29

Three-Way Handshaking

The McGraw-Hill Companies, Inc., 2000

X+1

Four-Way Handshaking with Half-
Close
o Host A sends a FIN segment announcing its wish

for connection termination
o Host B sends a ACK segment acknowledging the

FIN segment from A
n The connection is closed in one direction
n But host B can continue sending data to A

o Host B sends a FIN segment to close the connection
o Host A sends a ACK segment to acknowledges the

FIN segment from B

Figure 12-29

Half-Close

The McGraw-Hill Companies, Inc., 2000

Y
X+1

X+1

Z+1

X+1

Connection Reset
o The TCP at one end may
n Deny a connection request
n Abort a connection
n Terminate an idle connection

o How to achieve ?
n By the RST (reset) flag

Denying a Connection
o Example
n A TCP segment is received and requested a

connection to a nonexistent port

n The receiving TCP sends a segment with the RST
bit set

Aborting a Connection
o A process may want to abort a connection instead of

closing it normally
n Example, the process does not want the data in the queue

to be sent
o If closed normally, the data will be sent

o TCP may also want to abort the connection
n Example, it receives a segment belonging to the previous

connection
o This connection uses the same source and destination port

address as previous connection

Terminate an Idle Connection
o TCP on one side may discover that the TCP

on the other side has been idle for a long time

o Send an RST segment to destroy the
connection

12.5 STATE TRANSITION DIAGRAM

To keep track of all the different events happening during conneTo keep track of all the different events happening during connection ction
establishment, connection termination, and data transfer, the TCestablishment, connection termination, and data transfer, the TCP P
software is implemented as a finite state machine. . software is implemented as a finite state machine. .

The topics discussed in this section include:The topics discussed in this section include:

ScenariosScenarios

Figure 12-30

State Transition Diagram

The McGraw-Hill Companies, Inc., 2000

12.6 FLOW CONTROL

Flow control regulates the amount of data a source can send befoFlow control regulates the amount of data a source can send before re
receiving an acknowledgment from the destination. TCP defines a receiving an acknowledgment from the destination. TCP defines a
window that is imposed on the buffer of data delivered from the window that is imposed on the buffer of data delivered from the
application program. application program.

The topics discussed in this section include:The topics discussed in this section include:

Sliding Window ProtocolSliding Window Protocol
Silly Window SyndromeSilly Window Syndrome

Flow Control
o Regulate the amount of data a source can send

before receiving an acknowledgment
o Two extreme cases

n Send 1 byte of data and wait for an acknowledge
o Source would be idle

n Send all of the data without worrying about acknowledge
o May overwhelm the receiver buffer
o Inefficient if some part of data is lost, duplicated, received our of

order or corrupted

o Solution: the sliding window protocol by TCP

Sliding Window Protocol
o Both hosts use a window for each connection
n Containing bytes that a host can send before

worrying about an acknowledgment
o Called sliding windows
n The window can slide over the buffer

oo TCPTCP’’s sliding windows are byte orienteds sliding windows are byte oriented

Figure 12-11

Sliding Window

The McGraw-Hill Companies, Inc., 2000

IP

data has been
sent and acked

Sliding Window Protocol (Cont.)
o The window is opened, closed, or shrunk

n All in the control of the receiver and depend on
congestion in the network

o Opening a window
n Moving the right wall to the right
n Allow more bytes are eligible for sending

o Closing a window
n Moving the left wall to the right

o Some bytes have been acknowledged
o The sender needs not worry about them anymore

Sliding Window Protocol (Cont.)
o Shrinking the window
n Moving the right wall to the left

n Revoking the eligibility of some bytes for sending
o Application has sent it to the TCP buffer but later

wants to cannel its transmission
o Strongly discouraged and not allowed in some

implementation

Sliding Window Protocol (Cont.)
o The size of the window at one end is

determined by the minimum of two values
n Receiver window (rwnd)

o Advertised by the opposite end in a segment
containing acknowledgement

n Congestion window (cwnd)
o Determined by the network to avoid congestion

Example 3
o Suppose that Receiver B:

n Buffer size = 5000
n Receive 1000 bytes unprocessed data
n What is the value of the receiver window (rwnd) for

sender A?
o Solution

n The value of rwnd = 5,000 − 1,000 = 4,000.
n Host B can receive only 4,000 bytes of data before

overflowing its buffer.
n Host B advertises this value in its next segment to A.

Example 4
o Suppose sender A:
n rwnd = 3000 bytes
n cwnd = 3500 bytes
n What is the size of the window for host A?

o Solution
n The size of the window is the smaller of rwnd and

cwnd
n Ans: 3,000 bytes

Example 5: Figure 12.21 shows an unrealistic
example of a sliding window
o The sender has sent bytes up to 202.
o cwnd = 20 (in reality this value is thousands of bytes).
o The receiver has sent a ACK segment

n Acknowledgment number = 200
n rwnd = 9 bytes (in reality this value is thousands of bytes).

o Therefore
n The size of the sender window

o The minimum of rwnd and cwnd or 9 bytes.
n Bytes 200 to 202 are sent, but not acknowledged.
n Bytes 203 to 208 can be sent without worrying about

acknowledgment.
n Bytes 209 and above cannot be sent.

Figure 12-11

Figure 12.21

The McGraw-Hill Companies, Inc., 2000

Example 6
o In Figure 12.21
n Server receives a packet

o Acknowledgment value = 202
o rwnd = 9.

n The host has already sent bytes 203, 204, and 205.
n The value of cwnd is still 20.
n Show the new window.

Example 6 (Cont.)
o Solution
n Figure 12.22 shows the new window.
n Note that this is a case in which the window

o Closes from the left and opens from the right by an
equal number of bytes

o The size of the window has not been changed.
n The acknowledgment value, 202, declares that

bytes 200 and 201 have been received

Figure 12-11

Figure 12.22

The McGraw-Hill Companies, Inc., 2000

Example 7
o In Figure 12.22
n Sender receives a packet

o Acknowledgment value = 206
o rwnd = 12.

n The host has not sent any new bytes.
n The value of cwnd is still 20.
n Show the new window.

Example 7 (Cont.)
o Solution
n rwnd < cwnd

o The size of the window is 12.

n Figure 12.23 shows the new window.
o The window has been opened from the right by 7 and

closed from the left by 4

o The size of the window has increased.

Figure 12-11

Figure 12.23

The McGraw-Hill Companies, Inc., 2000

Example 8
o In Figure 12.23
n The host receives a packet

o Acknowledgment value = 210
o rwnd = 5.

n The host has sent bytes 206, 207, 208, and 209.
n The value of cwnd is still 20.
n Show the new window.

Example 8 (Cont.)
o Solution:
n rwnd < cwnd,

o The size of the window is 5.
n Figure 12.24 shows the situation.
n Note that this is a case not allowed by most

implementations.

Figure 12-11

Figure 12.24

The McGraw-Hill Companies, Inc., 2000

How can the receiver avoid shrinking the window in the previous
example?

Example 9

Solution

new ack + new rwnd ≥ last ack + last rwnd
or

new rwnd ≥ (last ack + last rwnd) − new ack

Example 9
o How can the receiver avoid shrinking the

window in the example 8?

Example 9 (Cont.)
o Solution:
n The receiver needs to keep track of the last

acknowledgment number and the last rwnd.
o Right wall = acknowledgment number + rwnd

n To prevent shrinking, we must always have the
following relationship.

new ack + new rwnd ≥ last ack + last rwnd
or

new rwnd ≥ (last ack + last rwnd) − new ack

Example 9 (Cont.)
o In example 8
n New Ack. Num. = 210, New rwnd = 5
n Last Ack. Num = 206, Last rwnd = 12
n 5 < (206+12)-210; the relationship is not hold

o Thus, the receiver must want until more
buffer space is free before sending an ack.
n i.e., have a larger value of rwnd

To avoid shrinking the sender window,
the receiver must wait until more

space is available in its buffer.

Note:Note:

Window Shutdown
o In some cases, the receiver does not want to receive

any data from the sender for a while
n The receiver temporarily shut down the window
n Sending a segment with the rwnd = 0
n The sender stops until a new advertisement has arrived

o However, during window shutdown
n The sender can always send a segment with one byte of

data
n Called probing and is used to prevent deadlock

oo In TCP, the sender window size is totally In TCP, the sender window size is totally
controlled by the receiver window valuecontrolled by the receiver window value

oo However, the actual window size can be However, the actual window size can be
smaller if there is congestion in the networksmaller if there is congestion in the network

oo Some Points about TCPSome Points about TCP’’s Sliding Windowss Sliding Windows
nn The size of the window is the lesser of The size of the window is the lesser of rwndrwnd and and cwndcwnd
nn The source does not have to send a full windowThe source does not have to send a full window’’s worth s worth

of dataof data
nn The window can be opened or closed by the receiver, but The window can be opened or closed by the receiver, but

should not be shrunkshould not be shrunk
nn The destination can send an acknowledgment at any The destination can send an acknowledgment at any

time as long as it does not result in a shrinking windowtime as long as it does not result in a shrinking window
nn The receiver can temporarily shut down the window; the The receiver can temporarily shut down the window; the

sender, however, can always send a segment of one byte sender, however, can always send a segment of one byte
after the window is shut downafter the window is shut down

Silly Window Syndrome
o Problem in the sliding window operation

n The sending process creates data slowly
n Or the receiving process consume data slowly
n Or both
n Result in the sending of data in very small segment

o Reduce the network efficiency

o For example, send a one byte segment result in
overhead of 41/1
n Assume TCP header is 20 bytes + IP header is 20 bytes

Syndrome Created by the Sender
o Sender application create data too slowly
n For example, only 1 byte at a time
n Sending TCP would create segments containing 1

byte of data
o Solution: prevent the sending TCP from

sending the data byte by byte
n Sending TCP must be forced to wait as it collects

data to send in a larger block
n But, how long should the sending TCP wait?

Nagle’s Algorithm
o Nagle found the solution to above syndrome

n The sending TCP sends the first piece of data it receives
from the sending application
o Even if it is only 1 byte

n After sending the first segment, the sending TCP
accumulates data in the buffer and wait until
o Either the receiving TCP sends an acknowledge
o Or until enough data has accumulated to fill a maximum-sized

segment
n Step 2 is repeated. Segment 3 is sent if an

acknowledgment is received for segment 2 or enough data
is accumulated to fill a maximum-size segment

Nagle’s Algorithm (Cont.)
o Elegance
n Very simple
n Take into account the speed of the application

that creates the data and the speed of the network
that transports the data
o If application is faster than the network

n The segments are larger

o If the application is slower than the network
n The segment are smaller

Syndrome Created by the Receiver
o The receiving TCP may also create a silly window

syndrome
n If it is serving an application that consumes data slowly

o For example
n Sender application create data in 1K byte blocks
n But the receiving application consumes data 1 byte at a

time
n Assume the receiver buffer is 4K bytes

o Buffer will be full soon
o Sender then only can send 1 byte data to the receiver

Syndrome Created by the Receiver
(Cont.)
o Solution
n Clark’s solution

n Delayed acknowledgment

Clark’s Solution
o Send an acknowledgment as soon as the data

arrives but to announce a window size of zero
until
n Either there is enough space to accommodate a

segment of maximum size
n Or half of the buffer is empty

Delayed Acknowledgment
o Delay sending the acknowledgment
n When a segment arrives, it is not acknowledged

immediately
n Receiver waits until there is a decent amount of

space in its incoming buffer
o Delayed acknowledgment prevents the

sending TCP from sliding it window

Delayed Acknowledgment (Cont.)
o Another advantage

n Reduce traffic
n The receiver does not have to acknowledge each segment

o Disadvantage
n The sender may retransmit the unacknowledged segment

o Solution
n Defines the acknowledgment should not be delayed by

more than 500 ms

ERROR
CONTROL

12.712.7

The McGraw-Hill Companies, Inc., 2000

12.7 ERROR CONTROL

TCP provides reliability using error control, which detects corrTCP provides reliability using error control, which detects corrupted, upted,
lost, outlost, out--ofof--order, and duplicated segments. Error control in TCP is order, and duplicated segments. Error control in TCP is
achieved through the use of the checksum, acknowledgment, and tiachieved through the use of the checksum, acknowledgment, and timeme--
out. out.

The topics discussed in this section include:The topics discussed in this section include:

ChecksumChecksum
AcknowledgmentAcknowledgment
Acknowledgment TypeAcknowledgment Type
RetransmissionRetransmission
OutOut--ofof--Order Segments Order Segments
Some ScenariosSome Scenarios

Error Control
o TCP provides reliability using error control
n Detect corrupted segment, lost segment, out-of-

order segment, and duplicated segment

o Error detection and correction is achieved by
n Checksum
n Acknowledgment
n Time-out

Checksum
o TCP uses 16-bit checksum
n Mandatory in every segment

o Actually, 16-bit checksum is considered
inadequate for SCTP
n Mentioned later

Acknowledgment
o TCP uses acknowledgment to confirm the

receipt of data segment
o Control segments that carry no data but

consume a sequence number are also
acknowledged

o ACK segment are never acknowledged

ACK segments do not consume
sequence numbers and are not

acknowledged.

Note:Note:

Generating Acknowledgments: When Does a
Receiver Generate Acknowledgment?
1. When one end sends a data segment

n It must piggyback an acknowledgment
n Decrease the number of segments needed

2. The receiver delays sending an ACK
n When the following three conditions hold

o When the receiver has no data to send
o It receives an in-order segment
o The previous segment has already been acknowledged

n The receiver delays sending an ACK
o until another segment arrives or
o Until a period of time (normally 500 ms) has passed

n Thus, if only one outstanding in-order segment
o Delaying sending an ACK

n Prevent ACK segments from creating extra traffic

Generating Acknowledgments: When Does a
Receiver Generate Acknowledgment? (Cont.)

3. The receiver immediately sends an ACK
n When the following two conditions hold

o A in-order segment arrives
o The previous in-order segment has not been

acknowledged
n Thus, there should not be more than two in-order

unacknowledged segment at any time
n Prevent unnecessary retransmission

Generating Acknowledgments: When Does a
Receiver Generate Acknowledgment? (Cont.)
4. The receiver immediately sends an ACK

n When an out-of-order segment with higher sequence
number is received

n Enable fast retransmission of any missing segment
5. When a missing segment arrives, the receiver sends

an ACK
n Inform the receiver that segments reported missing have

been received
6. The receiver immediately sends an ACK if a

duplicate segment arrives
n Solve some problems when an ACK segment itself is lost

Acknowledgment Type
o Acknowledgment type
n Accumulative Acknowledgment (ACK)

o In past, TCP only uses this ACK

n Selective Acknowledgment (SACK)
o Newly added feature

Accumulative Acknowledgment (ACK)
o The receiver advertises the next byte it

expects to receive
n Ignore all segments received out-of-order

o Also called “positive” accumulative
acknowledgement
n Discarded, lost, or duplicated segments are not

reported

Selective Acknowledgment (SACK)
o Does not replace ACK
o But report additional information to the

sender
n The block of data that is out-of-order
n The block of segments that is duplicated

o SACK is implemented as an option
n Since there is no provision in the TCP header for

SACK

Retransmission
o When to retransmit a segment
n When a retransmission timer expires
n When the sender receives three duplicate ACK

o No retransmission occurs for segments
n If it does not consume sequence number
n If it is an ACK segment

Retransmission After RTO
o Sender TCP starts a retransmission time-out

(RTO) timer for each segment sent
o If timer matures
n Retransmit the segment

o RTO value is dynamic
n Updated based on the round trip time (RTT)

Retransmission After Three Duplicated
ACK Segments
o A segment is lost but the receiver receives so

many out-of-order segments
n Buffer may overflow

o Solution: fast retransmission
n Retransmit the missing segment immediately if

three duplicate ACK received

Out-of-Order Segment
o Out-of-order
n When a segment is delayed, lost, or discarded

o Previous solution in TCP
n Does not acknowledge an out-of-order segment
n Discard all out-of-order segment

o Result in the retransmission of the missing segment
and the following segment

Out-of-Order Segment (Cont.)
o Current implementation of TCP
n Store out-of-order segments temporarily
n Until the missing segment arrives

o Note
n The out-of-order segment are not delivered to the

process
n TCP guarantees in-order delivery

Data may arrive out of order and be
temporarily stored by the receiving TCP,
but TCP guarantees that no out-of-order

segment is delivered to the process.

Note:Note:

Some Scenarios
o Some scenarios occurs during the operation of TCP

n Normal operation
n Lost segment
n Fast retransmission
n Delayed segment
n Duplicate segment
n Automatically corrected lost ACK
n Lost acknowledgment corrected by resending a segment
n Deadlock created by lost acknowledgment

Figure 12-13

Normal Operation

The McGraw-Hill Companies, Inc., 2000

Wait to see if
more segments
arrives

Lost or Corrupted Segment
o A lost or corrupted segment is treated the same way

by the receiver TCP
n Lost segment: discarded somewhere in the network
n Corrupted segment: discarded by the receiver itself

o In following feature, segment 3 is lost
n Receiver receives a out-of-order segment (segment 4)

o Store it temporary and leave a gap
o Send an ACK immediately (ACK number = 701)

n Sender resent segment 3 when the RTO timer matures

Figure 12-13

Lost Segment

The McGraw-Hill Companies, Inc., 2000

Rule 3

Fast Retransmission
o In the following feature
n When the receiver receives the 4th, 5th, 6th

segment, it triggers an acknowledgment
n Thus, four acknowledgment are the same value

o Three duplicated
n Although the RTO timer for segment 3 has not

yet matured
o Invoke fast retransmit for segment 3

Figure 12-14

Fast Retransmission

The McGraw-Hill Companies, Inc., 2000

Delayed Segment
o Each TCP segment is encapsulated in an IP datagram

n IP datagram is routed independently
n A TCP segment may be delayed

o A delayed segment is treated the same way as lost or
corrupted segment by the receiver

o Note
n A delayed segment may arrive after it has been resent
n Cause a duplicate segment

Duplicate Segment
o Created by a sending TCP when a segment is

delayed and treated as lost by the receiver

o Destination detects duplicate segment since
they have the same sequence number
n Discard the later segment

Automatically Corrected Lost ACK
o A lost acknowledgment is automatically

replaced by the next
n Since ACK is accumulative

o In the following feature
n The next ACK automatically correct the lost of

the acknowledgment

Figure 12-13

Lost Acknowledgment

The McGraw-Hill Companies, Inc., 2000

Lost Acknowledgment Corrected by
Resending a Segment
o If an ACK is lost
n But the next ACK is delayed for a long time or
n There is no next acknowledgment

o How to correct ?
n By the RTO timer and resent the data segment

o Result in a duplicate ACK
n Receiver just discards it
n Resent the ACK immediately (rule 6)

Figure 12-14

Lost Acknowledgment Corrected by Resending
a Segment

The McGraw-Hill Companies, Inc., 2000

Deadlock Created by Lost
Acknowledgment
o A lose of an acknowledgment may result in system

deadlock
o Example

n Receiver sends an ACK with rwnd = 0
o Request the sender to shut down its window temporarily

n The sending TCP stops transmitting segments
n After a while, receiver sends an ACK and rwnd <>0

o Announce it can receive data again
o However, this ACK is lost

n As a result, both sender and receiver continue to wait for
each other forever

o Solution: a persistent timer

CONGESTION
CONTROL

12.812.8

The McGraw-Hill Companies, Inc., 2000

12.8 CONGESTION CONTROL

Congestion control refers to the mechanisms and techniques to keCongestion control refers to the mechanisms and techniques to keep the ep the
load below the capacity. load below the capacity.

The topics discussed in this section include:The topics discussed in this section include:

Network PerformanceNetwork Performance
Congestion Control MechanismsCongestion Control Mechanisms
Congestion Control in TCPCongestion Control in TCP

Congestion Control
o Congestion
n The load on the network is greater than the

capacity of the network
o Why?
n An internet is a combination of networks and

connecting devices, e.g., routers and switches
n A router has a buffer that stores the incoming

packets, processes them, and forward them.

Congestion Control (Cont.)
o In the following features,
n Input queue may be congested

o Packet arrival rate > packet processing rate

n Output queue may be congested
o Packet departure rate < packet processing rate

Figure 12-14

Router Queue

The McGraw-Hill Companies, Inc., 2000

Network Performance
o Network performance
n Delay

n Throughput

Delay versus Load
o In Fig. 12.31
n When the load is small, delay is minimum

o Delay = propagation delay + processing delay
o Can be negligible

n When the load becomes larger
o Delay = propagation delay + processing delay +

waiting time in all routers’ queues along the path
n When the load is greater than the capacity

o Delay becomes infinite

Figure 12-14

Packet Delay and Network Load

The McGraw-Hill Companies, Inc., 2000

Delay versus Load (Cont.)
o Delay has a negative effect on the

load/congestion
n When a packet is delayed or dropped in the router

o No acknowledgement is received by the sender

o The sender will retransmit the packet
n Create more congestion and more delaying/dropping of

packets

Throughput versus Load
o When the load is below the capacity of the

network
n Throughput increases proportionally with the load

o When the load reaches the capacity
n The throughput declines sharply

o Since more segments are discarded by the router
o However, discard segments cause more segments to

be transmitted
n Since TCP retransmission scheme

Figure 12-14

Throughput versus Network Load

The McGraw-Hill Companies, Inc., 2000

Congestion Control Mechanism
o Congestion control
n Prevent congestion before it happens
n Remove congestion after it happens

o Two categories
n Open-loop congestion control (prevention)
n Closed-loop congestion control (removal)

Open-Loop Congestion Control
o Prevent congestion before it happens
o Possible policies
n Retransmission policy

o Retransmission policy and retransmission timer
should be designed to optimize efficiency

n Acknowledgment policy
o Does not ACK every packet it receives

n Discard policy
o Router should adopt good discard policy

Closed-Loop Congestion Control
o Try to alleviate congestion after it happens
o Possible mechanisms

n Back pressure
o When a router is congested, it can inform the previous unstream router

to reduce it outgoing rate
o The action can be recursive all the way to the router just prior to the

source
n Choke Point

o A router sends a packet to the source to inform congestion
o This packet is called chock point, like ICMP’s source quench packet

n Implicit signaling
o Source can detect an implicit signal warning of congestion

n For example, the delay in receiving an acknowledgment
n Explicit signaling

o Router can send an explicit signal to the sender or receiver of congestion
n For example, set a bit in a packet

Congestion Control in TCP
o Outline
n Congestion window

n Congestion policy
o Slow start: exponential increase
o Congestion avoidance: additive increase
o Congestion detection: multiplicative decrease

Congestion Window
o Flow control
n Sender window size is determined by the

available buffer space in the receiver
o However, in addition to the receiver, the

network should be a second entity that
determines the size of the sender’s window

o Congestion control
n Determine the sender window size by the

congestion condition in the network

Congestion Window (Cont.)
o Thus, the sender’s window size is determined by

both
n Receiver
n Congestion in the network

o The sender has two pieces of information
n The receiver-advertised window size
n The congestion widow size

o The actual size of the window is the minimum of
these two
n Actual window size = minimum (receiver window size,

congestion window size) = minimum (rwnd, cwnd)

Congestion Policy
o Three phase in TCP’s congestion policy
n Slow start

n Congestion avoidance

n Congestion detection
o When a congestion is detected, sender return to the

slow start or congestion avoidance

Slow Start: Exponential Increase
o At the beginning,

n congestion window size = maximum segment size (MSS)
o MSS is determined during connection establishment

using an option (mentioned later)
o For each segment that is acknowledged

n Increase the congestion window size by one maximum
segment unit

n Until it reaches a threshold, called ssthresh (show start
threshold)
o Usually, ssthresh = 65535 bytes

Slow Start: Exponential Increase (Cont.)
o However, it is not actually “slow start”
n The congestion window size increases

exponentially
n Start => cwnd = 1 = 2^0
n After 1 RTT => cwnd = 2 = 2^1
n After 2 RTT => cwnd = 4 = 2^2
n After 3 RTT => cwnd = 8 = 2^3

Figure 12-14

Slow Start: Exponential Increase

The McGraw-Hill Companies, Inc., 2000

Congestion Avoidance: Additive
Increase
o Started after the congestion window size

reaches the ssthresh threshold
o When the whole window of segments is

acknowledged
n The size of congestion window is increased one
n Note, the whole window size is usually larger

than one in congestion avoidance

Figure 12-14

Congestion Avoidance, Additive Increase

The McGraw-Hill Companies, Inc., 2000

Congestion Avoidance: Additive
Increase (Cont.)
o In the above figure
n Start => cwnd = 1
n After 1 RTT => cwnd = 1 + 1 = 2
n After 2 RTT => cwnd = 2 + 1 = 3
n After 3 RTT => cwnd = 3 + 1 = 4

Congestion Detection: Multiplicative
Decrease
o If congestion occurs, the congestion window

size must be decreased
o How to detect a congestion?
n The need to retransmit a segment

o When to retransmit a segment
n When an RTO timer out
n When three duplicate ACKs are received

Congestion Detection: Multiplicative
Decrease (Cont.)
o In both cases, the size of the threshold is half of

the current congestion window size
n multiplicative decrease

o However, different actions are taken
1. If a time-out occurs: a strongly possibility of congestion

o The threshold should be set to half of the current congestion
window size
n Multiplicative decrease

o The congestion window size should start from one again, i.e.,
cwnd = 1

o The sender return to the slow start phase

Congestion Detection: Multiplicative
Decrease (Cont.)
n If three duplicated ACKs are received: a weaker

possibility of congestion
n Invoke fast retransmission and fast recovery

o The threshold should be set to half of the current
congestion window size
n Multiplicative decrease

o The congestion window size = threshold again, i.e.,
cwnd = ssthresh

o The sender starts the congestion avoidance phase

Most implementations react differently to
congestion detection:

❏ If detection is by time-out, a new slow start phase
starts.

❏ If detection is by three ACKs, a new congestion
avoidance phase starts.

Note:Note:

Figure 12-17

TCP Congestion Policy Summary

The McGraw-Hill Companies, Inc., 2000

Figure 12-17

Congestion Example

The McGraw-Hill Companies, Inc., 2000

TCP
TIMERS

12.912.9

The McGraw-Hill Companies, Inc., 2000

12.9 TCP TIMERS

To perform its operation smoothly, most TCP implementations use To perform its operation smoothly, most TCP implementations use at at
least four timers. least four timers.

The topics discussed in this section include:The topics discussed in this section include:

Retransmission TimerRetransmission Timer
Persistence TimerPersistence Timer
Keepalive TimerKeepalive Timer
TIMETIME--WAIT TimerWAIT Timer

Figure 12-16

TCP Timers

The McGraw-Hill Companies, Inc., 2000

Retransmission Timer
o When TCP sends a segment, it creates a

retransmission timer to that segment
n If an acknowledgment is received before the

timer goes off
o The timer is destroyed

n If timer goes off before an acknowledgment
arrives
o The segment is retransmitted and the timer is reset

Calculation of Retransmission Time
o TCP cannot use the same retransmission time for all

connections
n Each connection has different length and network

characteristics
o Furthermore, TCP cannot use the same

retransmission time for one single connection
n The network behavior is dynamic

o Thus, TCP uses the dynamic retransmission time
n Different for each connection and may be changed during

the same connection

Calculation of Retransmission Time
(Cont.)
o Retransmission time-out (RTO) is calculated

based on RTT
o But, how to calculate RTT?

Calculation of RTT
o Measured RTT

o Smoothed RTT

o RTT Deviation

Measured RTT
o Measured RTT: RTTM
n How long it takes to send a segment and receive

an acknowledgment
o Note, segments and their ACKs do not have a

one-to-one relationship
n Several segments may be acknowledged together

o In TCP, only one RTT measurement can be in
process at any time

Smoothed RTT
o The measured RTT may fluctuation very

highly
n Cannot be used for RTO purpose

o Smooth RTT: RTTS

o RTTS = (1-a) RTTS + a x RTTM
n a is usually 1/8 percent

RTT Deviation
o Most implementation also calculate the RTT

deviation, called RTTD
o Original => No value
o After first measurement
n RTTD = RTTM/2

o After any other measurement
n RTTD=(1-B)RTTD+Bx |RTTS-RTTM|
n B is usually 1/4

Retransmission Timeout (RTO)
o Original => Initial value
o After any measurement
n RTO = RTTS + 4 x RTTD

Figure 12.38 shows part of a connection. The figure shows the
connection establishment and part of the data transfer phases.

Example 10

1. When the SYN segment is sent, there is no value for RTTM , RTTS , or
RTTD . The value of RTO is set to 6.00 seconds.

RTO = 6

2. When the SYN+ACK segment arrives, RTTM is measured and is equal to
1.5 seconds.

RTTM = 1.5 RTTS = 1.5
RTTD = 1.5 / 2 = 0.75 RTO = 1.5 + 4 . 0.75 = 4.5

Example 10 (continued)

3.When the first data segment is sent, a new RTT measurement
starts. Note that the sender does not start an RTT measurement
when it sends the ACK segment, because it does not consume a
sequence number and there is no time-out. No RTT
measurement starts for the second data segment because a
measurement is already in progress.

RTTM = 2.5
RTTS = 7/8 (1.5) + 1/8 (2.5) = 1.625
RTTD = 3/4 (7.5) + 1/4 |1.625 − 2.5| = 0.78
RTO = 1.625 + 4 (0.78) = 4.74

Figure 12.38 Example 10

Karn’s Algorithm
o Problem
n If a segment is not acknowledged during the

retransmission period and it is retransmitted
n When the sending TCP receives an ACK.

o It does not know this acknowledgment is for the first
one or for the retransmitted one?

o Solution: Karn’s algorithm
n Do not consider the RTT of a retransmitted

segment in the calculation of the new RTT

Exponential Backoff
o What is the value of RTO if a retransmission

occurs ?

o Exponential backoff in TCP
n RTO is double for each retransmission

Example
o Figure 12.39 is a continuation of the previous

example
o There is retransmission and Karn’s algorithm is

applied.
o The first segment in the figure is sent, but lost.

n The RTO timer expires after 4.74 seconds.
n The segment is retransmitted and the timer is set to 9.48,

twice the previous value of RTO.
o This time an ACK is received before the time-out.

n Wait until we send a new segment and receive the ACK
for it before recalculating the RTO (Karn’s algorithm).

Figure 12.39 Example 11

Persistence Timer
o TCP needs another timer to deal with the zero

window-size advertisement
o Example

n Receiving TCP announces a window size of zero
n The sending TCP stops transmitting segments
n After a while, receiving TCP sends an acknowledgment

announcing a non-zero window size
o However, this acknowledgment was lost

n As a result, both sender and receiver continue to wait for
each other forever

Persistence Timer (Cont.)
o Solution: TCP uses a persistence timer for each

connection
o When the sending TCP receives an acknowledgment

with a window size of zero
n It starts a persistence timer

o When the timer goes off
n The sending TCP sends a special segment called a probe

o Contain only 1 byte of data and is never acknowledged
o Alert the receiving TCP that the acknowledgment may by lost

and should be resent

Persistence Timer (Cont.)
o Value of persistence timer is set to the value of the

retransmission timer
o However, if a response is not received from the

receiver
n Another probe segment is sent
n The value of the persistence timer is double

o Above process is repeated until the persistence timer
reaches a threshold
n Usually 60 seconds

Keepalive Timer
o If a client has crashed

n A TCP connection will be remain open forever
o Solution: Keepalive timer

n The time-out is usually 2 hours
n If a server does not hear from the client after two hours

o Send a probe segment

n If there is no response after 10 probes, each of which is 75
seconds apart
o It assumes that client is down and terminates the connection

Time-Waited Timer
o Used during connection termination

o Mentioned later but ignore

OPTIONS

12.1012.10

The McGraw-Hill Companies, Inc., 2000

Figure 12-21

Options

The McGraw-Hill Companies, Inc., 2000

End of Option
o Used for padding at the end of the option field

n Can only be used as the last option
n Can be used only once

o Only one end of option can be used
n If more than 1 byte is needed to align the option field, use

some no-operation option followed by an end of option
o Three pieces of information to the destination

n No more options in the header
n Data from the application program starts at the beginning

of the next 32-bit word

Figure 12-22

End of option Option

The McGraw-Hill Companies, Inc., 2000

No Operation
o Used to align the next option on a 32-bit

boundary

Figure 12-23

No operation Option

The McGraw-Hill Companies, Inc., 2000

Maximum Segment Size (MSS)
o Define the size of the biggest chunk of data that can

be received by the destination
o Notably, it actually defines the maximum size of

data, not the maximum size of segment
o Determined during the connection establishment

phase
n Once determined, it does not change during the

connection
n If neither party defines the size, the default is chosen
n Default value is 536

Figure 12-24

Maximum segment size Option

The McGraw-Hill Companies, Inc., 2000

Window Scale Factor
o The window size field in the header defines the size

of the sliding window
n The size of the windows: 0 ~ 65535
n However, it may not be sufficient in some networks

o To increase the window size, the window scale
factor is used
n New window size = window size defined in the header x

2window scale factor

o However, the window size cannot be greater than the
maximum value for the sequence number

Window Scale Factor (Cont.)
o Window scale factor can be determined only

during the connection setup phase
o Thus, during data transfer, the size of the

window may be changed
n But it must be multiplied by the same scale factor
n Cannot be changed during the connection

o The scale factor is also called shift count
n Multiplying a number by power of 2 = left shift

Figure 12-25

Window scale factor Option

The McGraw-Hill Companies, Inc., 2000

Timestamp
o Two applications
n Measure the round trip time

n Prevent wrap around sequence number

Figure 12-26

Timestamp Option

The McGraw-Hill Companies, Inc., 2000

Measuring RTT
o Timestamp value field

n Filled by the source when a segment leaves
o Timestamp echo reply field

n When destination sends an acknowledgement, copy the
received timestamp value into the timestamp echo reply
field

o The source, when it receives acknowledgment
n Calculate the round-trip time

o Thus, there is no need for clock synchronization
n All calculation is based on the sender clock

Measuring RTT (Cont.)
o The receiver needs to keep two variables
n lastack: the value of the last acknowledgment

number sent
n tsrecent: the value of recent timestamp that has

not yet echoed

n Detailed operation is shown in the next example

Example 12
o The sender simply inserts the value of its

system clock in the timestamp field for the
first and second segment.

o When an acknowledgment comes (the third
segment)
n The value of the clock is checked and the value of

the echo reply field is subtracted from the current
time.

n RTT is 12 s in this scenario.

Example 12 (Cont.)
o The receiver’s function is more involved.
o It keeps track of the last acknowledgment sent (12000).
o When the first segment arrives (bytes 12000 to 12099)

n The first byte is the same as the value of lastack.
n Copy the timestamp value (4720) into the tsrecent variable.

o When the second segment arrives
n None of the byte numbers in this segment include the value of lastack

o The value of the timestamp field is ignored.
o When the receiver decides to send an accumulative

acknowledgment with acknowledgment 12200
n Changes the value of lastack to 12200
n Inserts the value of tsrecent in the echo reply field.

Figure 12.46 Example 12

Example 12 (Cont.)
o In this example
n RTT is calculated the time difference between

sending the first segment and receiving the third
segment.

o This is actually the meaning of RTT:
n The time difference between a packet sent and the

acknowledgment received.

PAWS
o Timestamp is also used for another application
n Protection against wrapped around sequence

number (PAWS)
o Although sequence number is 32 bits
n It could be wrapped around in a high-speed

connection
n T=0, a sequence number is n
n After T=t, the sequence number is also n in the

same connection

PAWS (Cont.)
o Problem:

n If the fist segment is duplicated and arrives during the
second round of sequence number

n The segment will be wrongly considered belonging to the
second run

o Solution:
n Increase the size of sequence number

o Change the window size and segment format
n Include the timestamp

o The identity of a segment is the combination of timestamp and
sequence number

SACK-Permitted and SACK Options
o TCP’s ACK is accumulative
o Problems

n Does not report the bytes that have arrived out of order
n Does not report about duplicate segments

o Solutions
n Selective acknowledgment (SACK)

o Thus, two new options
n SACK permitted
n SACK

SACK

SACK-Permitted Option
o Two bytes used only during connection

establishment
n Not allowed during the data transfer phase

o Sender
n SYN segment with SACK-permitted option

o Receiver
n SYN+ACK segment also with SACK-permitted

option

SACK Option
o Variable length
o Include a list of blocks arriving out-of-order
n The first block can also be used to report the

duplicates
n Each block occupies two 32-bit number

o Defining the beginning and the end of the block
n SACK option cannot define more than 4 blocks

o The allowed size of an option in TCP is 40 bytes
o If 5 blocks, (5 x 2) x 4 + 2 = 42 > 40

Example 13
o The first and second segments are in consecutive order.
o Segments 3, 4, and 5 are out of order

n A gap between the second and third
n Another gap between the fourth and the fifth.

o An ACK and a SACK together can easily clear the situation
for the sender.
n The value of ACK is 2001

o Sender need not worry about bytes 1 to 2000.
n The SACK has two blocks.

o The first block announces that bytes 4001 to 6000 have arrived out of
order.

o The second block shows that bytes 8001 to 9000 have also arrived out of
order.

o This means that bytes 2001 to 4000 and bytes 6001 to 8000 are lost or
discarded.
n The sender can resend only these bytes.

Example 13

An end has received five segment of data

Example 14
o Figure 12.49 shows how a duplicate segment can be

detected with a combination of ACK and SACK.

o In the figure, we have two out-of-order segments (in
one block) and one duplicate segment.
n SACK uses the first block to show the duplicate data

o Note that only the first block can be used for duplicate data.

n The other blocks to show out-of-order data.

Example 14

Example 15
o The example shows what happens if one of

the segments in the out-of-order section is
also duplicated.

o One of the segments (4001:5000) is
duplicated.
n The SACK option announces this duplicate data

first
n Then the out-of-order block.

Example 15

