Chapter 1 Introduction

Hsung-Pin Chang Department of Computer Science National Chung Hsing University

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Outline

- 1.1 What Is an Embedded System?
- 1.2 Characteristics of Embedded System
- 1.3 Examples of Embedded Systems
- 1.4 Challenges in Embedded System Design
- 1.5 Embedded System Design Process
- Appendix: Software Storage and Upgradeability in Embedded Systems

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

1.1 What Is an Embedded System?

- *Embedded systems* are computing systems with tightly coupled hardware and software integration, that are *designed to perform a dedicated function*.
- **Definition:** Embedded system
 - Any device that includes a programmable computer but is not itself a general-purpose computer.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

1.2 Characteristics of Embedded System (1/4)

- Object codes are stored in ROM/Flash
 - Usually do not equal with a hard disk
 - ROM and RAM are used to store the executable code and temporary storage for runtime data manipulation
- User interface
 - Contain some special type of inputs and outputs
 - Input: sensors, probes, communication signals, or control knobs and buttons.
 - Output: displays, communication signals

PDF created with FinePrint pdfFactory Pro trial version <u>www.pdffactory.com</u>

1.2 Characteristics of Embedded System (2/4)

• Tightly-constrained

- Low cost, low power, small size, fast, etc.

- Manufacturing cost
 - Mass-market items must have low manufacturing costs: limited memory, microprocessor power, the type of I/O devices
- Power
 - Critical in battery-powered devices.
 - Excessive power consumption increases system cost even in wall-powered devices

嵌入式即時作業系統

PDF created with FinePrint pdfFactory Pro trial version <u>www.pdffactory.com</u>

1.2 Characteristics of Embedded System (3/4)

- *Real-time*
 - Some embedded systems have real-time constraints
 - Hard-real-time: life-critical system
 - Soft-real-time: GPS navigation system

1.2 Characteristics of Embedded System (4/4)

- *Require specialized tools*
 - ICE
 - FPGA
 - Logic analyzer
- Require specialized design processes
 - Hardware/software partition
 - Hardware/software co-design
 - Cross-platform development
- Designed by small teams on tight deadlines
 - 6-month market window in common
 - International competitive environment

嵌入式即時作業系統

1.3 Examples of Embedded Systems (1/2)

- Embedded system are ubiquitous
 - Industrial automation
 - Defense
 - Transportation
 - Aerospace
- For example
 - Personal digital assistant (PDA).
 - NASA's Mars Path Finder
 - Lockheed Martin's missile guidance system
 - Automobile: engine, brakes, etc.
 - PC keyboard (scans keys).

嵌入式即時作業系統

PDF created with FinePrint pdfFactory Pro trial version <u>www.pdffactory.com</u>

1.3 Examples of Embedded Systems (2/2)

- In the home environment
 - Security systems
 - Cable and satellite boxes for televisions
 - Home theater systems
 - Telephone answering machines
- In the work environment
 - Network end-points: printers, cable modems, routers
 - Backbone gigabit switches
- In leisure activities
 - In-car navigation systems
 - Portable music player
 - Web tablet

Examples of Embedded Systems

Source: Qing Li and Caroline Yao, "real-time concepts for embedded systems"

PDF created with FinePrint pdfFactory Pro trial version <u>www.pdffactory.com</u>

Automotive Embedded Systems

- Today's high-end automobile may have 100 microprocessors:
 - 4-bit microcontroller checks seat belt
 - The ignition and braking systems
 - 16/32-bit microprocessor controls engine.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

BMW 850i Brake and Stability Control System

- Anti-lock brake system (ABS):
 - Pumps brakes to reduce skidding
- Automatic stability control (ASC+T):
 - Controls engine to improve stability
- ABS and ASC+T communicate.
 - ABS was introduced first
 - ASC+T needed to interface to existing ABS module.

PDF created with FinePrint pdfFactory Pro trial version <u>www.pdffactory.com</u>

Mars Path Finder

- The Mars Pathfinder was actually two embedded systems
 - A landing craft: a 32-bit processor and 128 MB of RAM
 - A rover: only an 8-bit processor and 512KB.
- Design Key Point: *Reliability*
 - All of the potential failure points are enhanced by adding redundant circuitry or extra functionality
 - For example: an extra processor, special memory diagnostics, a hardware timer to reset the system if the software got stuck, and so on.

嵌入式即時作業系統

1.4 Challenges in Embedded System Design (1/2)

- How much hardware do we need?
 - How big is the CPU? Memory? Peripheral devices
- *How do we meet our deadlines?*
 - Faster hardware or cleverer software?
 - Select a faster CPU may also miss deadline since memory system is the bottleneck
- *How do we minimize power?*
 - Turn off unnecessary logic? Reduce memory accesses? Run at slower clock?

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

1.4 Challenges in Embedded System Design (2/2)

- *How do we design for upgradeability?*
- *Does it really work?*
 - Reliability is always important in selling products
- Complex testing
- Limited observability and controllability
 - Usually do not have keyboards and screens
- Restricted development platform
 - Much more limited than in PCs

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

1.5 The Embedded System Design Process

- 1.5.1 Requirements
- 1.5.2 Specification
- 1.5.3 Architecture Design
- 1.5.4 Designing Hardware and Software Components
- 1.5.5 System Integration
- 1.5.6 Issues

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

1.5.1 Requirements

- Functional requirements
 - Basic functions of a system
 - However, not sufficient
- Non-functional requirements
 - Performance
 - Cost
 - Manufacturing cost: the cost of components and assembly
 - Nonrecurring engineering (NRE): the personnel and other costs of designing the system
 - Physical size and weight
 - Power consumption

PDF created with FinePrint pdfFactory Pro trial version <u>www.pdffactory.com</u>

Example: GPS Moving Map Requirements

• Moving map obtains position from GPS, paints map from local database.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Initial Requirements List

- Functionality
 - For automotive use.
 - Show major roads and landmarks.
- User interface
 - At least 400 x 600 pixel screen.
 - Three buttons max.
 - Pop-up menu
- Cost:
 - \$500 street price

PDF created with FinePrint pdfFactory Pro trial version <u>www.pdffactory.com</u>

Initial Requirements List

• Performance

- Map should scroll smoothly
- Display take no more than 1 sec upon power-up
- Verify and display the current map within 15 seconds.
- Physical size/weight
 - Should fit in hand.
- Power consumption
 - Should run for 8 hours on four AA batteries.

嵌入式即時作業系統

Requirement Chart

Name	GPS Moving Map
Purpose	Consumer-grade
Inputs	Power button, two control buttons
Outputs	Back-lit LCD 400x600
Functions	5-receiver GPS; three resolution; display current lat/lon
Performance	Updates screen within 0.25 sec of movement
Manufacturing cost	\$100 cost-of-goods-sold
Power	100 mW
Physical size/weight	No more than 2" x 6", 12 ounces

嵌入式即時作業系統

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

1.5.2 Specification

- A more precise description of the system:
 - Should not imply a particular architecture;
 - Provides input to the architecture design process.
- Must be carefully written to
 - Reflect the customer's requirements
 - Be clearly followed during design

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Example: GPS Specification

- A GPS specification should include several components
 - What is received from GPS
 - Map data
 - User interface
 - Operations required to satisfy user requests;
 - Background operations needed to keep the system running
 - Such as operating the GPS receiver

PDF created with FinePrint pdfFactory Pro trial version <u>www.pdffactory.com</u>

1.5.3 Architecture Design

- What major components go satisfying the specification?
- Hardware components:
 - CPUs, peripherals, etc.
- Software components:
 - Major programs and their operations.

PDF created with FinePrint pdfFactory Pro trial version <u>www.pdffactory.com</u>

Example: GPS Moving Map Block Diagram

嵌入式即時作業系統

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

1.5.4 Designing Hardware and Software Components (1/3)

- Must spend time *architecting the system* before you start coding.
- Some components are
 - Ready-made
 - CPU, memory chip
 - Some can be *modified from existing designs*
 - Others must be *designed from scratch*.

PDF created with FinePrint pdfFactory Pro trial version <u>www.pdffactory.com</u>

1.5.4 Designing Hardware and Software Components (2/3)

- Both the hardware and the software for an embedded system are developed in parallel
 - Software can take advantage of special hardware features to gain performance
 - Hardware can simplify design if functionality can be achieved in software to *reduce hardware complexity and cost*

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

1.5.4 Designing Hardware and Software Components (3/3)

- Software development in embedded system: *cross-platform development*
 - Software, including system and application software, is developed on one platform but runs on another
 - *Platform*: a combination of hardware, operating system, and software development tools
 - *Host system*: the system on which the embedded software is developed
 - *Target system*: the embedded system under development
- *Cross-compiler*: the main tool in cross-platform development
 - A compiler that runs on one type of processor architecture but produces object code for a different type of processor architecture

PDF created with FinePrint pdfFactory Pro trial version <u>www.pdffactory.com</u>

GPS Moving Map Hardware Architecture

嵌入式即時作業系統

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

GPS Moving Map Software Architecture

嵌入式即時作業系統

PDF created with FinePrint pdfFactory Pro trial version <u>www.pdffactory.com</u>

1.5.6 System Integration

• Put together the components.

– Many bugs appear only at this stage.

- Solutions
 - Have a plan for integrating components to uncover bugs quickly
 - Test as much functionality as early as possible.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Appendix: Software Storage and Upgradeability in Embedded Systems (1/2)

- Code for embedded system is commonly stored in ROM and NVRAM memory devices
- Depending on the memory devices used, upgrading an embedded system may need to
 - Build new PROM
 - Deploy special equipment and/or a special method to reprogram the EPROM
 - Reprogram the flash memory

PDF created with FinePrint pdfFactory Pro trial version <u>www.pdffactory.com</u>

Appendix: Software Storage and Upgradeability in Embedded Systems (2/2)

- Software storage device has an impact on software development
 - To reprogram an EPROM when small changes are made is tedious and time-consuming during software development
 - Must remove the EPROM device from its socket
- Software storage device also has an impact on maintenance
 - Must replace PROM and EPROM chips when upgrading an embedded system
 - However, flash memory or EEPROM can be upgraded dynamically without the need for chip replacement

PDF created with FinePrint pdfFactory Pro trial version <u>www.pdffactory.com</u>

Read Only Memory (ROM) (1/2)

- Mask Programmed ROM
 - Memory content is programmed during manufacturing process
 - Programmed once and cannot be changed
- Field Programmed ROM (PROM)
 - Memory content cannot change once programmed
- Erasable Programmable ROM (EPROM)
 - Can be custom-programmed, erased, and reprogramming as often as required
 - To reprogram: remove from its hosing unit and use a EPROM programmer

PDF created with FinePrint pdfFactory Pro trial version <u>www.pdffactory.com</u>

Read Only Memory (ROM) (2/2)

- Electrically Erasable Programmable ROM (EEPROM or E²PROM)
 - Memory content of a single byte can be selectively erased and reprogrammed
 - Can be reprogrammed while staying in the device
 - Without a special programmer
- Flash Memory
 - A variation of EEPROM
 - But allow for block-level programmability that is much faster than EEPROM

PDF created with FinePrint pdfFactory Pro trial version <u>www.pdffactory.com</u>

Random Access Memory (RAM)

- Dynamic RAM (DRAM)
 - Require periodic refreshing to retain its content
- Static RAM (SRAM)
 - Faster than DRAM because it does not require periodic refreshing
- Non-Volatile RAM (NVRAM)
 - A special type of SRAM that has backup battery power
 - Or a combination of SRAM and EEPROM

PDF created with FinePrint pdfFactory Pro trial version <u>www.pdffactory.com</u>

Reference

- Qing Li and Caroline Yao, "Real-Time Concepts for Embedded Systems", CMP Books, ISBN: 1-57820-124-1, 2003
- Wayne Wolf, "Computers as Components: Principles of Embedded Computing System Design," Morgan Kaufman Publishers, 2001
- Silberschatz, Galvin, and Gagne, "Operating System Concepts", John Wiley, 2002.
- Sixto Ortiz Jr., "Embedded OSs Gain the Inside Track," IEEE Computer Magazine, November 2001, pp. 14~16

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com