
1

Chapter 2
Assemblers

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

2

Outline
o 2.1 Basic Assembler Functions
o 2.2 Machine-Dependent Assembler Features
o 2.3 Machine-Independent Assembler Features
o 2.4 Assembler Design Options
o 2.5 Implementation Examples

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

3

Introduction to Assemblers
o Fundamental functions
n Translate mnemonic operation codes to their

machine language equivalents
n Assign machine addresses to symbolic labels used

by the programmer
o The feature and design of an assembler depend
n Source language it translate
n The machine language it produce

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

4

2.1 Basic Assembler Functions
o Assembler
n A program that accepts an assembly

language program as input and produces
its machine language equivalent along with
information for the loader

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

5

2.1 Basic Assembler Functions (Cont.)
o Constructions of assembly language program
n Instruction

Label mnemonic operand
o Operand

n Direct addressing
o E.g. LDA ZERO

n Immediate addressing
o E.g. LDA #0

n Indexed addressing
o E.g. STCH BUFFER, X

n Indirect addressing
o E.g J @RETADR

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

6

2.1 Basic Assembler Functions (Cont.)
o Constructions of assembly language program (Cont.)

n Data
Label BYTE value
Label WORD value
Label RESB value
Label RESW value

o Label: name of operand
o value: integer, character
o E.g. EOF BYTE C’EOF’
o E.g. FIVE WORD 5

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

7

Assembler Directives
o Pseudo-instructions

n Not translated into machine instructions
n Provide instructions to the assembler itself

o Basic assembler directives
n START: specify name and starting address of the program
n END: specify end of program and (option) the first executable

instruction in the program
o If not specified, use the address of the first executable instruction

n BYTE: direct the assembler to generate constants
n WORD
n RESB: : instruct the assembler to reserve memory location without

generating data values
n RESW

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

8

Example of a SIC Assembler Language
Program (Fig 2.1)
o Goal:
n Reads records from input device (code F1)
n Copies them to output device (code 05)
n Loop until end of the file is detected
o Write EOF on the output device
o Terminate by executing an RSUB instruction

to return to the operating system
n Assume this program is called by OS using JSUB

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

9

Example of a SIC Assembler Language
Program (Fig 2.1) (Cont.)
o Data transfer (RD, WD) method for each record
n A buffer is used to store record

o Buffering is necessary for different I/O rate devices

n The end of each record is marked with a NULL
character (0016)
o The end of file is indicated by a zero-length record

o Subroutines (JSUB, RSUB) are used
n RDREC, WRREC
n Save link register first before nested jump

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

10

Example of a SIC Assembler
Language Program (Fig 2.2)
o Show the generated object code for each statement in

Fig. 2.1
o Loc column shows the machine address for each

part of the assembled program
n Assume program starts at address 1000
n All instructions, data, or reserved storage are sequential

arranged according to their order in source program.
n A location counter is used to keep track the address

changing

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

11

Example of a SIC Assembler
Language Program (Fig 2.1,2.2)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

12

Example of a SIC Assembler
Language Program (Fig 2.1,2.2) (Cont.)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

13

Example of a SIC Assembler
Language Program (Fig 2.1,2.2) (Cont.)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

14

Functions of a Basic Assembler
o Convert mnemonic operation codes to their machine

language equivalents
n E.g. STL -> 14 (line 10)

o Convert symbolic operands to their equivalent
machine addresses
n E.g. RETADR -> 1033 (line 10)

o Build the machine instructions in the proper format
o Convert the data constants to internal machine

representations
n E.g. EOF -> 454F46 (line 80)

o Write the object program and the assembly listing

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

15

Functions of a Basic Assembler (Cont.)
o All of above functions can be accomplished by

sequential processing of the source program
n Except number 2 in processing symbolic operands

o Example
n 10 STL RETADR

o RETADR is not yet defined when we encounter STL
instruction

o Called forward reference

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

16

Symbolic Operands (Renew)
o We’re not likely to write memory addresses

directly in our code.
n Instead, we will define variable names.

o Other examples of symbolic operands
n Labels (for jump instructions)
n Subroutines
n Constants

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

17

Address Translation Problem
o Forward reference
n A reference to a label that is defined later in the

program
o We will be unable to process this statement

o As a result, most assemblers make 2 passes
over the source program
n 1st pass: scan label definitions and assign addresses
n 2nd pass: actual translation (object code)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

18

Functions of Two Pass Assembler
o Pass 1 - define symbols (assign addresses)

n Assign addresses to all statements in the program
n Save the values assigned to all labels for use in Pass 2
n Process some assembler directives

o Pass 2 - assemble instructions and generate object
program
n Assemble instructions
n Generate data values defined by BYTE, WORD, etc.
n Process the assembler directives not done in Pass 1
n Write the object program and the assembly listing

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

19

Object Program
o Finally, assembler must write the generated

object code to some output device
n Called object program

n Will be later loaded into memory for execution

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

20

Object Program (Cont.)
o Contains 3 types of records:

n Header record:
Col. 1 H
Col. 2-7 Program name
Col. 8-13 Starting address (hex)
Col. 14-19 Length of object program in bytes (hex)

n Text record
Col.1 T
Col.2-7 Starting address in this record (hex)
Col. 8-9 Length of object code in this record in bytes (hex)
Col. 10-69 Object code (hex) (2 columns per byte)

n End record
Col.1 E
Col.2~7 Address of first executable instruction (hex)

(END program_name)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

21

Object Program for Fig 2.2 (Fig 2.3)

Address of first executable
instruction (hex)

Program name,Starting address (hex),Length
of object program in bytes (hex)

Starting address (hex),Length of object
code in this record (hex),Object code (hex)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

22

2.1.2 Assembler Algorithm and Data
Structures
o Algorithm
n Two-pass assembler

o Data Structures
n Operation Code Table (OPTAB)
n Symbol Table (SYMTAB)
n Location Counter (LOCCTR)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

23

Internal Data Structures
o OPTAB (operation code table)

n Content
o Menmonic machine code and its machine language equivalent
o May also include instruction format, length etc.

n Usage
o Pass 1: used to loop up and validate operation codes in the source

program
o Pass 2: used to translate the operation codes to machine language

n Characteristics
o Static table, predefined when the assembler is written

n Implementation
o Array or hash table with mnemonic operation code as the key (preferred)

n Ref. Appendix A

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

24

Internal Data Structures (Cont.)
o SYMTAB (symbol table)

n Content
o Label name and its value (address)
o May also include flag (type, length) etc.

n Usage
o Pass 1: labels are entered into SYMTAB with their address (from

LOCCTR) as they are encountered in the source program
o Pass 2: symbols used as operands are looked up in SYMTAB to

obtain the address to be inserted in the assembled instruction
n Characteristic

o Dynamic table (insert, delete, search)
n Implementation

o Hash table for efficiency of insertion and retrieval

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

25

Internal Data Structures (Cont.)
o Location Counter
n A variable used to help in assignment of

addresses
n Initialized to the beginning address specified in

the START statement
n Counted in bytes

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

26

Algorithm for 2 Pass Assembler (Fig
2.4)
o Figure 2.4 (a): algorithm for pass 1 of

assembler

o Figure 2.4 (b): algorithm for pass 2 of
assembler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

27

Algorithm for 2 Pass Assembler (Fig
2.4)
o Both pass1 and pass 2 need to read the

source program.
n However, pass 2 needs more information
o Location counter value, error flags

o Intermediate file
n Contains each source statement with its assigned

address, error indicators, etc
n Used as the input to Pass 2

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

28

Intermediate File

Pass 1

assembler
Pass 2

assembler
Intermediate

file

OPTAB SYMTABLOCCTR

nLABEL, OPCODE, OPERANDSource
Program

Object
Program

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

29

Algorithm for Pass 1 of Assembler
(Fig 2.4a)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

30

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

31

Algorithm for Pass 2 of Assembler
(Fig 2.4b)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

32

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

33

Assembler Design
o Machine Dependent Assembler Features

n instruction formats and addressing modes
n program relocation

o Machine Independent Assembler Features
n literals
n symbol-defining statements
n expressions
n program blocks
n control sections and program linking

o Assembler design Options
n one-pass assemblers
n multi-pass assemblers

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

34

2.2 Machine Dependent Assembler
Features
o Machine Dependent Assembler Features
n SIC/XE
n Instruction formats and addressing modes
n Program relocation

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

35

SIC/XE Assembler
o Previous, we know how to implement the 2-

pass SIC assembler.

o What’s new for SIC/XE?
n More addressing modes.
n Program Relocation.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

36

SIC/XE Assembler (Cont.)
o SIC/XE

n Immediate addressing: op #c
n Indirect addressing: op @m
n PC-relative or Base-relative addressing: op m

o The assembler directive BASE is used with base-relative addressing
o If displacements are too large to fit into a 3-byte instruction, then 4-byte

extended format is used
n Extended format: +op m
n Indexed addressing: op m, x
n Register-to-register instructions
n Large memory

o Support multiprogramming and need program reallocation capability

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

37

Example of a SIC/XE Program (Fig
2.5)
o Improve the execution speed
n Register-to-register instructions

n Immediate addressing: op #c
o Operand is already present as part of the instruction

n Indirect addressing: op @m
o Often avoid the need of another instruction

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

38

Example of a SIC/XE Program (Fig
2.5,2.6)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

39

Example of a SIC/XE Program (Fig
2.5,2.6) (Cont.)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

40

Example of a SIC/XE Program (Fig
2.5,2.6) (Cont.)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

41

2.2.1 Instruction Formats and
Addressing Modes
o START now specifies a beginning program

address of 0
n Indicate a relocatable program

o Register translation
n For example: COMPR A, S => A004
n Must keep the register name (A, X, L, B, S, T, F,

PC, SW) and their values (0,1, 2, 3, 4, 5, 6, 8, 9)
o Keep in SYMTAB

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

42

Address Translation
o Most register-to-memory instructions are assembled

using PC relative or base relative addressing
n Assembler must calculate a displacement as part of the

object instruction
n If displacement can be fit into 12-bit field, format 3 is used.
n Format 3: 12-bit address field

o Base-relative: 0~4095
o PC-relative: -2048~2047

n Assembler attempts to translate using PC-relative first, then
base-relative
o If displacement in PC-relative is out of range, then try base-relative

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

43

Address Translation (Cont.)
n If displacement can not be fit into 12-bit field in

the object instruction, format 4 must be used.
o Format 4: 20-bit address field
o No displacement need to be calculated.

n 20-bit is large enough to contain the full memory address

o Programmer must specify extended format: +op m
o For example: +JSUB RDREC => 4B101036

n LOC(RDREC) = 1036, get it from SYMTAB

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

44

PC-Relative Addressing Modes
o 10 0000 FIRST STL RETADR 17202D

n Displacement= RETADR – (PC) = 30-3 = 2D
n Opcode (6 bits) =1416=000101002
n nixbpe=110010

o n=1, i = 1: indicate neither indirect nor immediate addressing
o p = 1: indicate PC-relative addressing

OPCODE e Addressn i x b p

0001 01 0 (02D)161 1 0 0 1

Object Code = 17202D

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

45

PC-Relative Addressing Modes (Cont.)
o 40 0017 J CLOOP 3F2FEC

n Displacement= CLOOP - (PC) = 6 - 1A = -14 = FEC (2’s
complement for negative number)

n Opcode=3C16 = 001111002

n nixbpe=110010

OPCODE e Addressn i x b p

0011 11 0 (FEC)161 1 0 0 1

Object Code = 3F2FEC

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

46

Base-Relative Addressing Modes
o Base register is under the control of the

programmer
n Programmer use assembler directive BASE to specify which

value to be assigned to base register (B)

n Assembler directive NOBASE: inform the assembler that the
contents of base register no longer be used for addressing

n BASE and NOBASE produce no executable code

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

47

Base-Relative Addressing Modes
(Cont.)
o 12 LDB #LENGTH
o 13 BASE LENGTH ;no object code
o 160 104E STCH BUFFER, X 57C003

n Displacement= BUFFER – (B) = 0036 – 0033(=LOC(LENGTH)) = 3
n Opcode=54
n nixbpe=111100

o n=1, i = 1: indicate neither indirect nor immediate addressing
o x = 1: indexed addressing
o b = 1: base-relative addressing

OPCODE e Addressn i x b p

0101 01 0 (003)161 1 1 1 0

Object Code = 57C003

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

48

Address Translation
o Assembler attempts to translate using PC-relative

first, then base-relative
n e.g. 175 1053 STX LENGTH 134000

o Try PC-relative first
n Displacement= LENGTH - (PC) = 0033 - 1056 = -1026 (hex)

o Try base-relative next
n displacement= LENGTH – (B) = 0033 – 0033 =0
n Opcode=10
n nixbpe=110100

o n=1, i = 1: indicate neither indirect nor immediate addressing
o b = 1: base-relative addressing

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

49

Immediate Address Translation
o Convert the immediate operand to its internal

representation and insert it into the instruction
o 55 0020 LDA #3 010003

n Opcode=00
n nixbpe=010000

o i = 1: immediate addressing

OPCODE e Addressn i x b p

0000 00 0 (003)160 1 0 0 0

Object Code = 010003

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

50

Immediate Address Translation (Cont.)
o 133 103C +LDT #4096 75101000

n Opcode=74
n nixbpe=010001

o i = 1: immediate addressing
o e = 1: extended instruction format since 4096 is too large to fit

into the 12-bit displacement field

OPCODE e Addressn i x b p

0111 01 1 (01000)160 1 0 0 0
Object Code = 75101000

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

51

Immediate Address Translation (Cont.)
o 12 0003 LDB #LENGTH 69202D

n The immediate operand is the symbol LENGTH
o The address of LENGTH is loaded into register B

n Displacement=LENGTH – (PC) = 0033 – 0006 = 02D
n Opcode=6816 = 011010002
n nixbpe=010010

o Combined PC relative (p=1) with immediate addressing (i=1)

OPCODE e Addressn i x b p

0110 10 0 (02D)160 1 0 0 1

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

52

Immediate Address Translation (Cont.)
o 55 0020 LDA #3 010003
n Opcode = 0016 = 000000002

n nixbpe=010000
o i = 1: immediate addressing

OPCODE e Addressn i x b p

0110 10 0 (02D)160 1 0 0 0

P

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

53

Indirect Address Translation
o Indirect addressing
n The contents stored at the location represent the

address of the operand, not the operand itself
n Target addressing is computed as usual (PC-

relative or BASE-relative)

n n bit is set to 1

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

54

Indirect Address Translation (Cont.)
o 70 002A J @RETADR 3E2003

n Displacement= RETADR- (PC) = 0030 – 002D =3
n Opcode= 3C
n nixbpe=100010

o n = 1: indirect addressing
o p = 1: PC-relative addressing

OPCODE e Addressn i x b p

0011 11 0 (003)161 0 0 0 1

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

55

Note
o Ref: Appendix A

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

56

2.2.2 Program Relocation
o The larger main memory of SIC/XE

n Several programs can be loaded and run at the same time.
n This kind of sharing of the machine between programs is

called multiprogramming

o To take full advantage
n Load programs into memory wherever there is room
n Not specifying a fixed address at assembly time
n Called program relocation

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

57

2.2.2 Program Relocation (Cont.)
o Absolute program (or absolute assembly)

n Program must be loaded at the address specified at assembly time.
n E.g. Fig. 2.1

o e.g. 55 101B LDA THREE 00102D

n What if the program is loaded to 2000
e.g. 55 101B LDA THREE 00202D
o Each absolute address should be modified

COPY START 1000
FIRST STL RETADR

:
:

program loading
starting address 1000

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

58

Example of Program Relocation (Fig
2.7)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

59

2.2.2 Program Relocation (Cont.)
o Relocatable program

n An object program that contains the information necessary to perform
address modification for relocation

n The assembler must identify for the loader those parts of object
program that need modification.

n No instruction modification is needed for
o Immediate addressing (not a memory address)
o PC-relative, Base-relative addressing

n The only parts of the program that require modification at load time
are those that specify direct addresses
o In SIC/XE, only found in extended format instructions

COPY START 0
FIRST STL RETADR

:
:

program loading
starting address is
determined at load
time

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

60

Instruction Format vs. Relocatable
Loader
o In SIC/XE

n Format 1, 2, 3
o Not affect

n Format 4
o Should be modified

o In SIC
n Format 3 with address field

o Should be modified
o SIC does not support PC-relative and base-relative addressing

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

61

Relocatable Program

o Modification record
n Col 1 M
n Col 2-7 Starting location of the address field to be

modified, relative to the beginning of the program (hex)
n Col 8-9 length of the address field to be modified, in half-bytes
n E.g M^000007^05

Pass the address–modification information to the relocatable loader

Beginning address of the program is to be added to a field that begins
at addr ox000007 and is 5 bytes in length.

o We use modification records that are added to the
object files.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

62

Object Program for Fig 2.6 (Fig 2.8)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

63

2.3 Machine-Independent Assembler
Features
o Literals
o Symbol-Defining Statements
o Expressions
o Program Blocks
o Control Sections and Program Linking

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

64

2.3.1 Literals
o Design idea

n Let programmers to be able to write the value of a
constant operand as a part of the instruction that uses it.

n This avoids having to define the constant elsewhere in the
program and make up a label for it.

n Such an operand is called a literal because the value is
stated “literally” in the instruction.

n A literal is identified with the prefix =
o Examples

n 45 001A ENDFILLDA =C’EOF’ 032010
n 215 1062 WLOOPTD =X’05’ E32011

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

65

Original Program (Fig. 2.6)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

66

Using Literal (Fig. 2.9)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

67

Object Program Using Literal

The same as before

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

68

Original Program (Fig. 2.6)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

69

Using Literal (Fig. 2.9)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

70

Object Program Using Literal

The same as before

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

71

Object Program Using Literal (Fig 2.9
& 2.10)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

72

Object Program Using Literal (Fig 2.9
& 2.10) (Cont.)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

73

Object Program Using Literal (Fig 2.9
& 2.10) (Cont.)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

74

Literals vs. Immediate Operands
o Immediate Operands

n The operand value is assembled as part of the machine instruction
n e.g. 55 0020 LDA #3 010003

o Literals
n The assembler generates the specified value as a constant at some

other memory location
n The effect of using a literal is exactly the same as if the programmer

had defined the constant and used the label assigned to the constant as
the instruction operand.

n e.g. 45 001A ENDFIL LDA =C’EOF’ 032010 (Fig. 2.9)

o Compare (Fig. 2.6)
n e.g. 45 001A ENDFIL LDA EOF 032010

80 002D EOF BYTE C’EOF’ 454F46

Similar to define
constant

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

75

Literal - Implementation
o Literal pools
n All of the literal operands are gathered together

into one or more literal pools
n Normally, literal are placed at the end of the

object program, i.e., following the END statement
by the assembler

n E.g., Fig. 2.10 (END statement)
255 END FIRST

1076 * =X’05’ 05

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

76

Literal – Implementation (Cont.)
n In some case, programmer would like to place literals into a

pool at some other location in the object program
o Using assembler directive LTORG (see Fig. 2.10)
o Create a literal pool that contains all of the literal operands used

since the previous LTORG
o e.g., 45 001A ENDFIL LDA =C’EOF’ 032010 (Fig.2.10)

93 LTORG
002D * =C’EOF’ 454F46

o Reason: keep the literal operand close to the instruction referencing
it
n Allow PC-relative addressing possible

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

77

Literal - Implementation (Cont.)
o Duplicate literals

n e.g. 215 1062 WLOOP TD =X’05’
n e.g. 230 106B WD =X’05’
n The assemblers should recognize duplicate literals and

store only one copy of the specified data value
o Compare the character strings defining them

n E.g., =X’05’
n Easier to implement, but has potential problem (see next)

o Or compare the generated data value
n E.g.the literals =C’EOF’ and =X’454F46’ would specify identical

operand value.
n Better, but will increase the complexity of the assembler

Same
symbols,
only one
address is
assigned

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

78

Literal - Implementation (Cont.)
o Be careful when using literal whose value

depends on their location in the program
o For example, a literal may represent the

current value of the location counter
n Denoted by *
n “LDB =*” may result in different object code

when it appear in different location
n Cannot consider as duplicate literals

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

79

Basic Data Structure for Assembler to
Handle Literal Operands
o Data Structure: literal table - LITTAB
n Content

o Literal name
o The operand value and length
o Address assigned to the operand

n Implementation
o Organized as a hash table, using literal name or value

as key.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

80

How the Assembler Handles Literals?
o Pass 1

n Build LITTAB with literal name, operand value and length, (leaving
the address unassigned).

n Handle duplicate literals. (Ignore duplicate literals)
n When encounter LTORG statement or end of the program, assign an

address to each literal not yet assigned an address
o Remember to update the PC value to assign each literal’s address

o Pass 2
n Search LITTAB for each literal operand encountered
n Generate data values in the object program exactly as if they are

generated by BYTE or WORD statements
n Generate modification record for literals that represent an address in

the program (e.g. a location counter value)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

81

2.3.2 Symbol-Defining Statements
o Labels on instructions or data areas

n The value of such a label is the address assigned to the
statement on which it appears

o Defining symbols
n All programmer to define symbols and specify their values
n Format: symbol EQU value

o Value can be constant or expression involving constants and
previously defined symbols

n Example
o MAXLEN EQU 4096
o +LDT #MAXLEN

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

82

2.3.2 Symbol-Defining Statements
(Cont.)
o Usage:
n Make the source program easier to understand

o How assembler handles it?
n In pass 1: when the assembler encounters the

EQU statement, it enters the symbol into
SYMTAB for later reference.

n In pass 2: assemble the instruction with the value
of the symbol
o Follow the previous approach

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

83

Examples of Symbol-Defining
Statements
o E.g. +LDT #4096 (Fig 2.5)

n MAXLEN EQU 4096
n +LDT #MAXLEN

o E.g. define mnemonic names for registers
n A EQU 0
n X EQU 1
n L EQU 2
n …

o E.g. define names that reflect the logical function of the
registers in the program
n BASE EQU R1
n COUNT EQU R2
n INDEX EQU R3

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

84

ORG
o ORG (origin)
n Assembler directive: ORG value

o Value can be constant or expression involving
constants and previously defined symbols

n Assembler resets the location counter (LOCCTR)
to the specified value

LOCCTR control assignment of
storage in the object program

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

85

Example of Using ORG
o Consider the following data structure

n SYMBOL: 6 bytes
n VALUE: 3 bytes (one word)
n FLAGS: 2 bytes

o we want to refer to every field of each entry

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

86

ORG Example
o Using EQU statements

STAB RESB 1100
SYMBOL EQU STAB
VALUE EQU STAB+6
FLAG EQU STAB+9

n We can fetch the VALUE field by
LDA VALUE,X

n X = 0, 11, 22, … for each entry
Refer to entries in

the table using
indexed addressing

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

87

ORG Example (Cont.)
o Using ORG statements

STAB RESB 1100
ORG STAB

SYMBOL RESB 6
VALUE RESW 1
FLAGS RESB 2

ORG STAB+1100

n This method of definition makes the structure more clear.
n The last ORG is very important

o Set program counter (LOCCTR) back to its previous value

Size of field
more meaningful

Set the LOCCTR to STAB

Restore the LOCCTR
to its previous value

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

88

Forward Reference
o All symbol-defining directives do not allow

forward reference for 2-pass assembler
n e.g., EQU, ORG…
n All symbols used on the right-hand side of the

statement must have been defined previously
E.g. (Cannot be assembled in 2-pass assm.)

ALPHA EQU BETA
BETA EQU DELTA
DELTA RESW 1

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

89

Forward Reference (Cont.)
n E.g. (Cannot be assembled in 2-pass assm.)

ORG ALPHA
BYTE1 RESB 1
BYTE2 RESB 1
BYTE3 RESB 1

ORG
ALPHA RESB 1

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

90

2.3.3 Expressions
o Most assemblers allow the use of expression to

replace symbol in the operand field.
n Expression is evaluated by the assembler
n Formed according to the rules using the operators

+, -, *, /
o Division is usually defined to produce an integer result
o Individual terms can be

n Constants
n User-defined symbols
n Special terms: e.g., * (= current value of location counter)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

91

2.3.3 Expressions (Cont.)
o Review
n Values in the object program are

o relative to the beginning of the program or
o absolute (independent of program location)

n For example
o Constants: absolute
o Labels: relative

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

92

2.3.3 Expressions (Cont.)
o Expressions can also be classified as absolute

expressions or relative expressions
n E.g. (Fig 2.9)

107 MAXLEN EQU BUFEND-BUFFER
o Both BUFEND and BUFFER are relative terms, representing

addresses within the program
o However the expression BUFEND-BUFFER represents an

absolute value: the difference between the two addresses

n When relative terms are paired with opposite signs
o The dependency on the program starting address is canceled out
o The result is an absolute value

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

93

2.3.3 Expressions (Cont.)
o Absolute expressions

n An expression that contains only absolute terms
n An expression that contain relative terms but in pairs and

the terms in each such pair have opposite signs
o Relative expressions

n All of the relative terms except one can be paired and the
remaining unpaired relative terms must have a positive
sign

o No relative terms can enter into a multiplication or
division operation no matter in absolute or relative
expression

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

94

2.3.3 Expressions (Cont.)
o Errors: (represent neither absolute values nor

locations within the program)
n BUFEND+BUFFER // not opposite terms
n 100-BUFFER // not in pair
n 3*BUFFER // multiplication

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

95

2.3.3 Expressions (Cont.)
o Assemblers should determine the type of an

expression
n Keep track of the types of all symbols defined in

the program in the symbol table.
n Generate Modification records in the object

program for relative values.
Symbol Type Value

RETADR R 30
BUFFER R 36
BUFEND R 1036
MAXLEN A 1000

SYMTAB for Fig. 2.10

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

96

2.3.4 Program Blocks
o Previously, main program, subroutines, and data area are

treated as a unit and are assembled at the same time.
n Although the source program logically contains subroutines, data area,

etc, they were assembled into a single block of object code
n To improve memory utilization, main program, subroutines, and data

blocks may be allocated in separate areas.
o Two approaches to provide such a flexibility:

n Program blocks
o Segments of code that are rearranged within a single object program unit

n Control sections
o Segments of code that are translated into independent object program

units

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

97

2.3.4 Program Blocks
o Solution 1: Program blocks

n Refer to segments of code that are rearranged within a
single object program unit

n Assembler directive: USE blockname
o Indicates which portions of the source program belong to which

blocks.
n Codes or data with same block name will allocate together
n At the beginning, statements are assumed to be part of the

unnamed (default) block
n If no USE statements are included, the entire program

belongs to this single block.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

98

2.3.4 Program Blocks (Cont.)
o E.g: Figure 2.11

n Three blocks
o First: unnamed, i.e., default block

n Line 5~ Line 70 + Line 123 ~ Line 180 + Line 208 ~ Line 245
o Second: CDATA

n Line 92 ~ Line 100 + Line 183 ~ Line 185 + Line 252 ~ Line 255
o Third: CBLKS

n Line 105 ~ Line 107

n Each program block may actually contain several
separate segments of the source program.

n The assembler will (logically) rearrange these segments to
gather together the pieces of each block.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

99

Program with Multiple Program
Blocks (Fig 2.11 & 2.12)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

100

Program with Multiple Program
Blocks (Fig 2.11 & 2.12) (Cont.)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

101

Program with Multiple Program
Blocks (Fig 2.11 & 2.12)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

102

Basic Data Structure for Assembler to
Handle Program Blocks
o Block name table
n Block name, block number, address, length

Block name Block number Address Length
(default) 0 0000 0066
CDATA 1 0066 000B
CBLKS 2 0071 1000

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

103

How the Assembler Handles Program
Blocks?
o Pass 1

n Maintaining separate location counter for each program
block

n Each label is assigned an address that is relative to the
start of the block that contains it

n When labels are entered into SYMTAB, the block name
or number is stored along with the assigned relative
addresses.

n At the end of Pass 1, the latest value of the location
counter for each block indicates the length of that block

n The assembler can then assign to each block a starting
address in the object program

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

104

How the Assembler Handles Program
Blocks? (Cont.)
o Pass 2
n The address of each symbol can be computed by

adding the assigned block starting address and
the relative address of the symbol to the start of
its block
o The assembler needs the address for each symbol

relative to the start of the object program, not the start
of an individual program block

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

105

Table for Program Blocks
o At the end of Pass 1 in Fig 2.11:

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

106

Example of Address Calculation
o Each source line is given a relative address assigned and a

block number
n Loc/Block Column in Fig. 2.11

o For an absolute symbol (whose value is not relative to the start
of any program block), there is no block number
n E.g. 107 1000 MAXLEN EQU BUFEND-BUFFER

o Example: calculation of address in Pass 2
n 20 0006 0 LDA LENGTH 032060

LENGTH = (block 1 starting address)+0003 = 0066+0003= 0069
LOCCTR = (block 0 starting address)+0009 = 0009
PC-relative: Displacement = 0069 - (LOCCTR) = 0069-0009=0060

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

107

2.3.4 Program Blocks (Cont.)
o Program blocks reduce addressing problem:

n No needs for extended format instructions (lines 15, 35, 65)
o The larger buffer is moved to the end of the object program

n No needs for base relative addressing (line 13, 14)
o The larger buffer is moved to the end of the object program

n LTORG is used to make sure the literals are placed ahead
of any large data areas (line 253)
o Prevent literal definition from its usage too far

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

108

2.3.4 Program Blocks (Cont.)
o Object code

n It is not necessary to physically rearrange the generated
code in the object program to place the pieces of each
program block together.

n Loader will load the object code from each record at the
indicated addresses.

o For example (Fig. 2.13)
n The first two Text records are generated from line 5~70
n When the USE statement is recognized

o Assembler writes out the current Text record, even if there still
room left in it

o Begin a new Text record for the new program block

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

109

Object Program Corresponding to Fig.
2.11 (Fig. 2.13)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

110

Program blocks for the Assembly and
Loading Processes (Fig. 2.14)

same
order

Rearrangement
through loading

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

111

2.3.5 Control Sections and Program
Linking
o Control sections
n A part of the program that maintains its identity

after reassembly
o Each control section can be loaded and relocated

independently
o Programmer can assemble, load, and manipulate each

of these control sections separately

n Often used for subroutines or other logical
subdivisions of a program

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

112

2.3.5 Control Sections and Program
Linking (Cont.)
o Instruction in one control section may need to refer

to instructions or data located in another section
n Called external reference

o However, assembler have no idea where any other
control sections will be located at execution time

o The assembler has to generate information for such
kind of references, called external references, that
will allow the loader to perform the required linking.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

113

Program Blocks v.s. Control Sections
o Program blocks
n Refer to segments of code that are rearranged

with a single object program unit

o Control sections
n Refer to segments that are translated into

independent object program units

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

114

Illustration of Control Sections and
Program Linking (Fig 2.15 & 2.16)

Implicitly defined as an external symbol

Define external symbols

External
reference

First control section: COPY

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

115

Illustration of Control Sections and
Program Linking (Fig 2.15 & 2.16) (Cont.)

Second control section: RDREC

External
reference

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

116

Illustration of Control Sections and
Program Linking (Fig 2.15 & 2.16) (Cont.)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

117

2.3.5 Control Sections and Program
Linking (Cont.)
o Assembler directive: secname CSECT

n Signal the start of a new control section
n e.g. 109 RDREC CSECT
n e.g. 193 WRREC CSECT
n START also identifies the beginning of a section

o External references
n References between control sections
n The assembler generates information for each external

reference that will allows the loader to perform the
required linking.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

118

External Definition and References
o External definition

n Assembler directives: EXTDEF name [, name]
n EXTDEF names symbols, called external symbols, that

are defined in this control section and may be used by
other sections

n Control section names do not need to be named in an
EXTDEF statement (e.g., COPY, RDREC, and WRREC)
o They are automatically considered to be external symbols

o External reference
n Assembler directives: EXTREF name [,name]
n EXTREF names symbols that are used in this control

section and are defined elsewhere

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

119

2.3.5 Control Sections and Program
Linking (Cont.)
o Any instruction whose operand involves an

external reference
n Insert an address of zero and pass information to the

loader
o Cause the proper address to be inserted at load time

n Relative addressing is not possible
o The address of external symbol have no predictable

relationship to anything in this control section
o An extended format instruction must be used to provide

enough room for the actual address to be inserted

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

120

Example of External Definition and
References
o Example

n 15 0003 CLOOP +JSUB RDREC 4B100000

n 160 0017 +STCH BUFFER,X 57900000

n 190 0028 MAXLEN WORD BUFEND-BUFFER 000000

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

121

How the Assembler Handles Control
Sections?
o The assembler must include information in the object

program that will cause the loader to insert proper values
where they are required

o Define record: gives information about external symbols
named by EXTDEF
n Col. 1 D
n Col. 2-7 Name of external symbol defined in this section
n Col. 8-13 Relative address within this control section (hex)
n Col.14-73 Repeat information in Col. 2-13 for other external

symbols
o Refer record: lists symbols used as external references, i.e.,

symbols named by EXTREF
n Col. 1 R
n Col. 2-7 Name of external symbol referred to in this section
n Col. 8-73 Name of other external reference symbols

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

122

How the Assembler Handles Control
Sections? (Cont.)
o Modification record (revised)

n Col. 1 M
n Col. 2-7 Starting address of the field to be modified (hex)
n Col. 8-9 Length of the field to be modified, in half-bytes (hex)
n Col. 10 Modification flag (+ or -)
n Col.11-16 External symbol whose value is to be added to or subtracted

from the indicated field.
o Control section name is automatically an external symbol, it is available for

use in Modification records.
o Example (Figure 2.17)

n M000004^05^+RDREC
n M000011^05^+WRREC
n M000024^05^+WRREC
n M000028^06^+BUFEND //Line 190 BUFEND-BUFFER
n M000028^06^-BUFFER

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

123

Object Program Corresponding to Fig.
2.15 (Fig. 2.17)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

124

Object Program Corresponding to Fig.
2.15 (Fig. 2.17) (Cont.)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

125

Object Program Corresponding to Fig.
2.15 (Fig. 2.17) (Cont.)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

126

Program Linking & Relocation
o Note: the revised Modification record may still be

used to perform program relocation.
n E.g. (Fig. 2.8.)

o M00000705
o M00001405
o M00002705 are changed to
o

o M00000705+COPY //add the beginning address of its section
o M00001405+COPY
o M00002705+COPY

o So the same mechanism can be used for program
relocation and for program linking.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

127

External References in Expression
o Earlier definitions
n Required all of the relative terms be paired in an

expression (an absolute expression), or that all
except one be paired (a relative expression)

o New restriction
n Both terms in each pair must be relative within

the same control section
n Ex: BUFEND-BUFFER: Legal
n Ex: RDREC-COPY: illegal

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

128

External References in Expression
(Cont.)
o However, when an expression involves external

references, the assembler cannot determine whether
or not the expression is legal.

o How to enforce this restriction
n The assembler evaluates all of the terms it can, combines

these to form an initial expression value, and generates
Modification records.

n The loader checks the expression for errors and finishes
the evaluation.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

129

2.4 Assembler Design Options
o One-pass assemblers

o Multi-pass assemblers

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

130

2.4.1 One-Pass Assemblers
o Goal: avoid a second pass over the source program
o Main problem

n Forward references to data items or labels on instructions
o Solution

n Data items: require all such areas be defined before they
are referenced

n Label on instructions: cannot be eliminated
o E.g. the logic of the program often requires a forward jump
o It is too inconvenient if forward jumps are not permitted

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

131

Two Types of One-Pass Assemblers:
o Load-and-go assembler
n Produces object code directly in memory for

immediate execution

o The other assembler
n Produces usual kind of object code for later

execution

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

132

Load-and-Go Assembler
o No object program is written out, no loader is

needed
o Useful for program development and testing

n Avoids the overhead of writing the object program out
and reading it back in

o Both one-pass and two-pass assemblers can be
designed as load-and-go
n However, one-pass also avoids the overhead of an

additional pass over the source program
o For a load-and-go assembler, the actual address must

be known at assembly time.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

133

Forward Reference Handling in One-pass
Assembler
o When the assembler encounter an instruction

operand that has not yet been defined:
1. The assembler omits the translation of operand address
2. Insert the symbol into SYMTAB, if not yet exist, and

mark this symbol undefined
3. The address that refers to the undefined symbol is added

to a list of forward references associated with the symbol
table entry

4. When the definition for a symbol is encountered
1. The forward reference list for that symbol is scanned
2. The proper address for the symbol is inserted into any

instructions previous generated.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

134

Handling Forward Reference in One-pass
Assembler (Cont.)
o At the end of the program
n Any SYMTAB entries that are still marked with *

indicate undefined symbols
o Be flagged by the assembler as errors

n Search SYMTAB for the symbol named in the
END statement and jump to this location to begin
execution of the assembled program.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

135

Sample Program for a One-Pass
Assembler (Fig. 2.18)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

136

Sample Program for a One-Pass
Assembler (Fig. 2.18) (Cont.)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

137

Sample Program for a One-Pass
Assembler (Fig. 2.18) (Cont.)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

138

Example
o Fig. 2.19 (a)
n Show the object code in memory and symbol

table entries after scanning line 40
n Line 15: forward reference (RDREC)

o Object code is marked ----
o Value in symbol table is marked as * (undefined)
o Insert the address of operand (2013) in a list

associated with RDREC
n Line 30 and Line 35: follow the same procedure

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

139

After scanning line 40

Object Code in Memory and SYMTAB

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

140

Example (Cont.)
o Fig. 2.19 (b)

n Show the object code in memory and symbol table entries
after scanning line 160

n Line 45: ENDFIL was defined
o Assembler place its value in the SYMTAB entry
o Insert this value into the address (at 201C) as directed by the

forward reference list
n Line 125: RDREC was defined

o Follow the same procedure
n Line 65 and 155

o Two new forward reference (WRREC and EXIT)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

141

Object Code in Memory and SYMTAB
After scanning line 160

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

142

Object Code in Memory and SYMTAB
Entries for Fig 2.18 (Fig. 2.19b)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

143

One-Pass Assembler Producing Object
Code
o Forward reference are entered into the symbol table’s

list as before
n If the operand contains an undefined symbol, use 0 as the

address and write the Text record to the object program.
o However, when definition of a symbol is

encountered, the assembler must generate another
Text record with the correct operand address.

o When the program is loaded, this address will be
inserted into the instruction by loader.

o The object program records must be kept in their
original order when they are presented to the loader

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

144

Example
o In Fig. 2.20
n Second Text record contains the object code

generated from lines 10 through 40
o The operand addressed for the instruction on line 15,

30, 35 have been generated as 0000
n When the definition of ENDFIL is encountered

o Generate the third Text record
n Specify the value 2024 (the address of ENDFIL) is to be

loaded at location 201C (the operand field of JEQ in line 30)
n Thus, the value 2024 will replace the 0000 previously loaded

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

145

Object Program from one-pass
assembler for Fig 2.18 (Fig 2.20)

201C

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

146

2.4.2 Multi-Pass Assemblers
o Motivation: for a 2-pass assembler, any symbol

used on the right-hand side should be defined
previously.
n No forward references since symbols’ value can’t

be defined during the first pass
o E.g. APLHA EQU BETA

BETA EQU DELTA
DELTA RESW 1

Not allowed !

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

147

Multi-Pass Assemblers (Cont.)
o Multi-pass assemblers

n Eliminate the restriction on EQU and ORG
n Make as many passes as are needed to process the

definitions of symbols.
o Implementation

n To facilitate symbol evaluation, in SYMTAB, each entry
must indicates which symbols are dependent on the values
of it

n Each entry keeps a linking list to keep track of whose
symbols’ value depend on an this entry

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

148

Example of Multi-pass Assembler
Operation (fig 2.21a)

HALFSZ EQU MAXLEN/2
MAXLEN EQU BUFEND-BUFFER
PREVBT EQU BUFFER-1

.

.

.
BUFFER RESB 4096
BUFEND EQU *

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

149

Example of Multi-Pass Assembler
Operation (Fig 2.21b)

HALFSZ EQU MAXLEN/2
MAXLEN EQU BUFEND-BUFFER
PREVBT EQU BUFFER-1

.

.

.
BUFFER RESB 4096
BUFEND EQU *

&1: one system in the defining expression is undefined

A list of the symbols whose
values depend on MAXLEN

*: undefined

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

150

Example of Multi-Pass Assembler
Operation (Fig 2.21c)

HALFSZ EQU MAXLEN/2
MAXLEN EQU BUFEND-BUFFER
PREVBT EQU BUFFER-1

.

.

.
BUFFER RESB 4096
BUFEND EQU *

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

151

Example of Multi-pass Assembler
Operation (fig 2.21d)

HALFSZ EQU MAXLEN/2
MAXLEN EQU BUFEND-BUFFER
PREVBT EQU BUFFER-1

.

.

.
BUFFER RESB 4096
BUFEND EQU *

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

152

Example of Multi-pass Assembler
Operation (fig 2.21e)

HALFSZ EQU MAXLEN/2
MAXLEN EQU BUFEND-BUFFER
PREVBT EQU BUFFER-1

.

.

.
BUFFER RESB 4096
BUFEND EQU *

Suppose Buffer =* = (PC)=103416

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

153

Example of Multi-pass Assembler
Operation (Fig 2.21f)

HALFSZ EQU MAXLEN/2
MAXLEN EQU BUFEND-BUFFER
PREVBT EQU BUFFER-1

.

.

.
BUFFER RESB 4096
BUFEND EQU *

BUFEND=*(PC)=103416+409610=103416+100016=203416

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

154

2.5 Implementation Examples
o Microsoft MASM Assembler

o Sun Sparc Assembler

o IBM AIX Assembler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

155

2.5.1 Microsoft MASM Assembler
o Microsoft MASM assembler for Pentium and

other x86 systems

o Programmer of an x86 system views memory
as a collection of segments

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

156

Microsoft MASM Assembler (Cont.)
o An MASM assembler language program is written as a collection of segments.
o Each segment is defined as belonging to a particular class: CODE, DATA,

CONST, STACK
o Assembler directive: SEGMENT

n Similar to program blocks in SIC
n All parts of a segment are gathered together by assembler

o Segment registers are automatically set by the system loader when a program is
loaded for execution: CS (code), SS (stack), DS (data), ES, FS, GS

o Assembler directive: ASSUME
n By default, assembler assumes all references to data segments use register DS
n We can change by the assembler directive ASSUME
n e.g. ASSUME ES:DATASEG2

o Tell the assembler that register ES indicate the segment DATASEG2
o Thus, any reference to labels are defined in DATASEG2 will be assembled using register ES

n Similar to BASE directive in SIC/XE
o BASE tell a SIC/XE assembler the contents of register B
o ASSUME tell MASM the contents of a segment register

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

157

Microsoft MASM Assembler (Cont.)
o Jump instructions are assembled in 2 different ways:

n Near jump: jump to a target in the same code segment
o 2- or 3-byte instruction

n Far jump: jump to a target in a different code segment
o 5-byte instruction

o Problem: Jump with forward reference
n By default, MASM assumes that a forward jump is a near jump
n If it is a far jump, programmer must tell the assembler

o E.g. JMP FAR PTR TARGET

o In x86, the length of an assembled instruction depends on the
operands that are used.
n Operands maybe registers, memory locations, immediate values (1~4

bytes)
n Thus, Pass 1 in MASM is much complex that in SIC assembler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

158

Microsoft MASM Assembler (Cont.)
o External references between separately

assembled modules must be handled by the
linker
n MASM directive: PUBLIC, EXTRN
n Similar to EXTDEF, EXTREF in SIC/XE

o The object program from MASM may be in
several different formats to allow easy and
efficient execution of the program in a variety
of operating environments.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

159

Development of 80x86 Assembly
Language Program

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

160

Template for an 80x86 Assembly
Program

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

161

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

162

A Simple 80x86 Assembly Program

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

163

The list File

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

164

The list File (Cont.)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

165

An Example of 80x86 Assembly
Program

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

166

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

167

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

168

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

169

Memory Map of the Example Program

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

