
Chapter 3 Loaders and
Linkers

Outline
 3.1 Basic Loader Functions
 3.2 Machine-Dependent Loader Features
 3.3 Machine-Independent Loader Features
 3.4 Loader Design Options
 3.5 Implementation Examples

Introduction
 Loading

 Brings the object program into memory for
execution

 Relocation
 Modify the object program so that it can be

loaded at an address different from the
location originally specified

 Linking
 Combine two or more separate object

programs and supplies the information needed
to allow references between them

Absolute loader

Loader

Linking loader

Linker

Overview of Chapter 3
 Type of loaders

 Assemble-and-go loader
 Absolute loader (bootstrap loader)
 Relocating loader (relative loader)
 Direct linking loader

 Design options
 Linkage editors
 Dynamic linking
 Bootstrap loaders

3.1 Basic Loader Functions
 The most fundamental functions of a loader:
 Bringing an object program into memory and

starting its execution
 Design of an Assemble-and-Go Loader

 Design of an Absolute Loader

 A Simple Bootstrap Loader

3.1.0 Assemble-and-Go Loader
 Characteristic

 The object code is produced directly in memory for
immediate execution after assembly

 Advantage
 Useful for program development and testing

 Disadvantage
 Whenever the assembly program is to be executed, it has

to be assembled again
 Programs consist of many control sections have to be

coded in the same language

3.1.1 Design of an Absolute Loader
 Absolute Program (e.g. SIC programs)

 Advantage
 Simple and efficient

 Disadvantages
 The need for programmer to specify the actual address at which it

will be loaded into memory
 Difficult to use subroutine libraries efficiently

 Absolute loader only performs loading function
 Does not need to perform linking and program relocation.
 All functions are accomplished in a single pass.

Design of an Absolute Loader (Cont.)
 In a single pass
 Check the Header record for program name,

starting address, and length
 Bring the object program contained in the Text

record to the indicated address
 No need to perform program linking and

relocation
 Start the execution by jumping to the address

specified in the End record

Loading of an Absolute Program (Fig
3.1 a)
 Object program contains
 H record
 T record
 E record

Loading of an Absolute Program (Fig
3.1 b)

Algorithm for an Absolute Loader (Fig. 3.2)

E.g., convert the pair of
characters “14”(two bytes) in
the object program to a single

byte with hexadecimal value 14

Object Code Representation
 Figure 3.1 (a)

 Each byte of assembled code is given using its
hexadecimal representation in character form
 For example, 14 (opcode of STL) occupies two bytes of memory
 Easy to read by human beings

 Each pair of bytes from the object program record must be
packed together into one byte during loading.
 Inefficient in terms of both space and execution time

 Thus, most machine store object programs in a
binary form

3.1.2 A Simple Bootstrap Loader
 Bootstrap Loader
 When a computer is first turned on or restarted, a

special type of absolute loader, called a bootstrap
loader is executed
 In PC, BIOS acts as a bootstrap loader

 This bootstrap loads the first program to be run
by the computer -- usually an operating system

A Simple Bootstrap Loader (Cont.)
 Example: a simple SIC/XE bootstrap loader (Fig. 3.3)

 The bootstrap itself begins at address 0 in the memory of
the machine

 It loads the OS (or some other program) starting address
0x80
 The object code from device F1 is always loaded into

consecutive bytes of memory, starting at address 80.

 After all the object code from device F1 has been loaded,
the bootstraps jumps to address 80
 Begin the execution of the program that was loaded.

Bootstrap loader for SIC/XE (Fig. 3.3)

Bootstrap loader for SIC/XE (Fig. 3.3)

Bootstrap loader for SIC/XE (Fig. 3.3)
begin

X=0x80 ; the address of the next memory location to be loaded
Loop

AGETC ; read one char. From device F1 and convert it from the
; ASCII character code to the value of the hex digit

save the value in the high-order 4 bits of S
AGETC
A (A+S) ; combine the value to form one byte
store the value (in A) to the address represented in register X
XX+1

end

3.2 Machine-Dependent Loader
Features
 Drawback of absolute loaders
 Programmer needs to specify the actual address at

which it will be loaded into memory.
 Difficult to run several programs concurrently,

sharing memory between them.
 Difficult to use subroutine libraries.

 Solution: a more complex loader that provides
 Program relocation
 Program linking

Machine-Dependent Loader Features
(Cont.)
 3.2.1 Relocation

 3.2.2 Program Linking

 3.2.3 Algorithm and Data Structures for a
Linking Loader

Review
Section 2.2.2
Program Relocation

Program Relocation
 Relocatable program

 An object program that contains the information necessary to perform
address modification for relocation

 The assembler can identify for the loader those parts of object
program that need modification.

 No instruction modification is needed for
 immediate addressing (not a memory address)
 PC-relative, Base-relative addressing

 The only parts of the program that require modification at load time
are those that specify direct addresses

COPY START 0
FIRST STL RETADR

:
:

program loading
starting address is
determined at load
time

Instruction Format vs. Relocatable
Loader
 In SIC/XE

 Relative and immediate addressing
 Do not need to modify their object code after relocation

 Extended format
 Whose values are affected by relocation
 Need to modify when relocation

 In SIC
 Format 3 with address field

 Should be modified
 SIC does not support PC-relative and base-relative addressing

3.2.1 Relocation
 Loaders that allow for program relocation are called

relocating loaders or relative loaders.
 Two methods for specifying relocation as part of the

object program
 Modification records

 Suitable for a small number of relocations required
 When relative or immediate addressing modes are extensively used

 Relocation bits
 Suitable for a large number of relocations required

 When only direct addressing mode can be used in a machine with
fixed instruction format (e.g., the standard SIC machine)

Relocation by Modification Record
 A Modification record is used to describe

each part of the object code that must be
changed when the program is relocated.

 Fig 3.4 & 3.5
 The only portions of the assembled program that

contain addresses are the extended format
instructions on lines 15,35,65

 The only items whose values are affected by
relocation.

Example of a SIC/XE Program (Fig
3.4,2.6)

Only three addresses
need to be relocated.

Example of a SIC/XE Program (Fig
3.4,2.6) (Cont.)

Example of a SIC/XE Program (Fig
3.4,2.6) (Cont.)

Relocatable Program

 Modification record
 Col 1 M
 Col 2-7 Starting location of the address field to be

modified, relative to the beginning of the program (hex)
 Col 8-9 length of the address field to be modified, in half-bytes
 E.g M^000007^05

Pass the address –modification information to the relocatable loader

Beginning address of the program is to be added to a field that begins
at addr ox000007 and is 5 bytes in length.

Object Program with Relocation by
Modification Records for Fig 3.5 (Fig 2.8)

Add the starting address
of the program

There is one modification record
for each address need to be relocated.

Relocation by Modification Record
(Cont.)
 The Modification record scheme is a

convenient means for specifying program
relocation.

 However, it is not well suited for use with all
machine architectures
 See Fig. 3.6.

 Relocatable program for a SIC machine
 Most instructions use direct addressing

 Too many modification records

Relocatable program for a standard
SIC machine (Fig. 3.6)

Relocatable program for a standard
SIC machine (Fig. 3.6) (Cont.)

Relocatable program for a Standard
SIC Machine (fig. 3.6) (Cont.)

This SIC program does not use relative addressing.
The addresses in all the instructions except RSUB must be modified.
This would require 31 Modification records.

Relocation by Relocation Bit
 If a machine primarily uses direct addressing and

has a fixed instruction format
 There are many addresses needed to be modified
 It is often more efficient to specify relocation using

relocation bit
 Relocation bit (Fig. 3.6, 3.7)

 Each instruction is associated with one relocation bit
 Indicate the corresponding word should be modified or not.

 These relocation bits in a Text record is gathered into bit
masks

Relocation by Relocation Bit (Fig. 3.7)
 Relocation bit

 0: no modification is needed
 1: modification is needed

Text record
col 1: T
col 2-7: starting address
col 8-9: length (byte)
col 10-12: relocation bits
col 13-72: object code

F1 is one-byte

Relocation Bits (Cont.)
 Each bit mask consists of 12 relocation bit in

each Text record
 Since each text record contains less than 12 words
 Unused words are set to 0

 E.g. FFC=111111111100 for line 10-55
 However, only 10 words in the first text record

Relocation Bits (Cont.)
 Note that, any value that is to be modified

during relocation must coincide with one of
these 3-byte segments
 E.g. Begin a new Text record for line 210

 Because line 185 has only 1-byte object code (F1)
 Make the following object code does not align to 3-

byte boundary

3.2.2 Program Linking
 Control sections
 Refer to segments of codes that are translated into

independent object program units
 These control sections could be assembled

together or independently of one another
 It is necessary to provide some means for linking

control sections together
 External definitions
 External references

Illustration of Control Sections and
Program Linking (Fig 2.15 & 2.16)

Illustration of Control Sections and
Program Linking (Fig 2.15 & 2.16) (Cont.)

Illustration of Control Sections and
Program Linking (Fig 2.15 & 2.16) (Cont.)

Control Sections and Program Linking
(Cont.)
 Assembler directive: secname CSECT
 Signals the start of a new control section
 E.g. 109 RDREC CSECT
 e.g. 193 WRREC CSECT

 External references
 References between control sections
 The assembler generates information for each

external reference that will allows the loader to
perform the required linking.

How the Assembler Handles Control
Sections?
 The assembler must include information in the object

program that will cause the loader to insert proper values
where they are required

 Define record
 Col. 1 D
 Col. 2-7 Name of external symbol defined in this control section
 Col. 8-13 Relative address within this control section (hex)
 Col.14-73 Repeat information in Col. 2-13 for other external

symbols
 Refer record

 Col. 1 R
 Col. 2-7 Name of external symbol referred to in this control section
 Col. 8-73 Name of other external reference symbols

How the Assembler Handles Control
Sections? (Cont.)
 Modification record (revised)

 Col. 1 M
 Col. 2-7 Starting address of the field to be modified (hex)
 Col. 8-9 Length of the field to be modified, in half-bytes (hex)
 Col. 10 Modification flag (+ or -)
 Col.11-16 External symbol whose value is to be added to or

subtracted from the indicated field.
 Example (Figure 2.17)

 M000004^05^+RDREC
 M000011^05^+WRREC
 M000024^05^+WRREC

 M000028^06^+BUFEND
 M000028^06^-BUFFER

Program Linking (Cont.)
 Goal of program linking
 Resolve the problems with EXTREF and

EXTDEF from different control sections

 Example:
 Fig. 3.8 and Fig. 3.9

Sample Programs Illustrating Linking
and Relocation (Fig. 3.8) –PROGA

Sample Programs Illustrating Linking
and Relocation (Fig. 3.8) –PROGB

Sample Programs Illustrating Linking
and Relocation (Fig. 3.8) –PROGC

Sample Programs Illustrating Linking
and Relocation
 Each control section defines a list:
 Control section A: LISTA --- ENDA
 Control section B: LISTB --- ENDB
 Control section C: LISTC --- ENDC

 Each control section contains exactly the
same set of references to these lists
 REF1 through REF3: instruction operands
 REF4 through REF8: values of data words

Sample Programs Illustrating Linking
and Relocation (Fig. 3.9) –PROGA

Sample Programs Illustrating Linking
and Relocation (Fig. 3.9) –PROGB

Sample Programs Illustrating Linking
and Relocation (Fig. 3.9) –PROGC

 Control section A
 LISTA is defined within the control section.
 Its address is available using PC-relative addressing.
 No modification for relocation or linking is necessary.

 Control sections B and C
 LISTA is an external reference.
 Its address is not available

 An extended-format instruction with address field set to 00000
is used.

 A modification record is inserted into the object code
 Instruct the loader to add the value of LISTA to this address field.

REF1 (LISTA)

REF2 (LISTB+4)
 Control sections A and C

 REF2 is an external reference (LISTB) plus a constant (4).
 The address of LISTB is not available

 An extended-format instruction with address field set to 00004
is used.

 A modification record is inserted into the object code
 Instruct the loader to add the value of LISTB to this address field.

 Control section B
 LISTB is defined within the control section.
 Its address is available using PC-relative addressing.
 No modification for relocation or linking is necessary.

REF3 (#ENDA-LISTA)
 Control section A

 ENDA and LISTA are defined within the control section.
 The difference between ENDA and LISTA is immediately available.
 No modification for relocation or linking is necessary.

 Control sections B and C
 ENDA and LISTA are external references.
 The difference between them is not available

 An extended-format instruction with address field set to 00000 is used.
 Two modification records are inserted into the object code

 +ENDA
 -LISTA

REF4 (ENDA-LISTA+LISTC)
 Control section A

 The values of ENDA and LISTA are internal. Only the value of LISTC is unknown.
 The address field is initialized as 000014 (ENDA-LISTA).
 One Modification record is needed for LISTC:

 +LISTC
 Control section B

 ENDA, LISTA, and LISTC are all unknown.
 The address field is initialized as 000000.
 Three Modification records are needed:

 +ENDA
 -LISTA
 +LISTC

 Control section C
 LISTC is defined in this control section but ENDA and LISTA are unknown.
 The address field is initialized as the relative address of LISTC (000030)
 Three Modification records are needed:

 +ENDA
 -LISTA
 +PROGC (***for relocation***) // Thus, relocation also use modification record

Program Linking Example (Cont.)
 Suppose the loader sequentially allocate the

address for object programs
 See Fig. 3.10
 Load address for control sections

 PROGA 004000 63
 PROGB 004063 7F
 PROGC 0040E2 51

 Fig. 3.10
 Actual address of LISTC: 0030+PROGC=4112

Programs From Fig 3.8 After Linking
and Loading (Fig. 3.10a) Values of REF4, REF5, …,

REF8 in three places are
all the same.

Relocation and Linking Operations Performed on
REF4 from PROGA (Fig. 3.10b)

Calculation of REF4 (ENDA-LISTA+LISTC)
 Control section A

 The address of REF4 is 4054 (4000 + 54)
 The address of LISTC is:

0040E2 + 000030 = 004112
(starting address of PROGC) (relative address of LISTC in PROGC)

 The value of REF4 is:
000014 + 004112 = 004126

(initial value) (address of LISTC)

 Control section B
 The address of REF4 is 40D3 (4063 + 70)
 The value of REF4 is:

000000 + 004054 - 004040 + 004112 = 004126
(initial value) (address of ENDA) (address of LISTA) (address of LISTC)

Target Address
are the same

Sample Program for Linking and
Relocation
 After these control sections are linked, relocated, and

loaded
 Each of REF4 through REF8 should have the same value

in each of the three control sections.
 They are data labels and have the same expressions

 But not for REF1 through REF3 (instruction operation)
 Depends on PC-relative, Base-relative, or direct addressing used

in each control section
 In PROGA, REF1 is a PC-relative
 In PROGB, REF1 is a direct (actual) address

 However, the target address of REF1~REF3 in each control
section are the same
 Target address of REF1 in PROGA, PROGB, PROGC are all 4040

3.2.3 Algorithm and Data Structure for
a Linking Loader
 Algorithm for a linking (and relocating) loader
 Modification records are used for relocation

 Not use the modification bits
 So that linking and relocation functions are performed

using the same mechanism.

 This type of loader is often found on machines
(e.g. SIC/XE)
 Whose relative addressing makes relocation

unnecessary for most instructions.

Implementation of An Assembler

Pass 1

assembler
Pass 2

assembler
Intermediate

file

OPTAB SYMTABLOCCTR

Source
Program

Object
Program

 Data Structure
 Operation Code Table (OPTAB)
 Symbol Table (SYMTAB)
 Location Counter (LOCCTR)

Implementation of a Linking Loader

Pass 1

Linking Loader

Pass 2

Linking Loader

ESTAB

Load Map

CSADDR

Object
Program Memory

 Two-pass process (similar to the Assembler):
 Pass 1: assigns addresses to all external symbols
 Pass 2: performs the actual loading, relocation, and linking

Algorithm for a Linking Loader
 Input is a set of object programs, i.e., control

sections

 A linking loader usually makes two passes
over its input, just as an assembler does
 Pass 1: assign addresses to all external symbols

 Pass 2: perform the actual loading, relocation, and
linking

Data Structures
 External Symbol Table (ESTAB)

 For each external symbol, ESTAB stores
 its name
 its address
 in which control section the symbol is defined

 Hashed organization

 Program Load Address (PROGADDR)
 PROGADDR is the beginning address in memory where the linked

program is to be loaded (supplied by OS).

 Control Section Address (CSADDR)
 CSADDR is the starting address assigned to the control section

currently being scanned by the loader.

 Control section length (CSLTH)

Pass 1 Program Logic (Fig. 3.11a)
 Assign addresses to all external symbols
 Loader is concerned only with Header and

Define records in the control sections

 To build up ESTAB
 Add control section name into ESTAB
 Add all external symbols in the Define

record into ESTAB

(only Header and Define records are concerned)

Load Map
 ESTAB (External Symbol Table) may also look like Load MAP

+

+

Pass 2 Program Logic (Fig. 3.11b)
 Perform the actual loading, relocation, and linking
 When Text record is encountered

 Read into the specified address (+CSADDR)
 When Modification record is encountered

 Lookup the symbol in ESTAB
 This value is then added to or subtracted from the

indicated location in memory
 When the End record is encountered

 Transfer control to the loaded program to begin execution
 Fig. 3.11(b)

// the next control section

Improve Efficiency
 Use local searching instead of multiple searches of ESTAB

for the same symbol
 Assign a reference number to each external symbol referred to in a

control section
 The reference number (instead of symbol name) is also used in

Modification records

 Avoiding multiple searches of ESTAB for the same symbol
during the loading of a control section.
 Search of ESTAB for each external symbol can be performed once

and the result is stored in a new table indexed by the reference
number.

 The values for code modification can then be obtained by simply
indexing into the table.

Improve Efficiency (Cont.)
 Implementation
 01: control section name
 other: external reference symbols

 Example
 Fig. 3.12

Object Programs Corresponding to Fig. 3.8 Using
Reference Numbers for Code Modification (Fig. 3.12)

Object Programs Corresponding to Fig. 3.8 Using
Reference Numbers for Code Modification (Fig. 3.12)
(Cont.)

Object Programs Corresponding to Fig. 3.8 Using
Reference Numbers for Code Modification (Fig. 3.12)
(Cont.)

New Table for Figure 3.12
Ref No. Symbol Address

1 PROGA 4000

2 LISTB 40C3

3 ENDB 40D3

4 LISTC 4112

5 ENDC 4124

Ref No. Symbol Address
1 PROGB 4063

2 LISTA 4040

3 ENDA 4054

4 LISTC 4112

5 ENDC 4124

Ref No. Symbol Address
1 PROGC 4063

2 LISTA 4040

3 ENDA 4054

4 LISTB 40C3

5 ENDB 40D3

PROGA

PROGB PROGC

