Chapter 2
Assemblers

Outline

0 2.1 Basic Assembler Functions

o 2.2 Machine-Dependent Assembler Features
o 2.3 Machine-Independent Assembler Features
0 2.4 Assembler Design Options

o 2.5 Implementation Examples

—!

| ntroduction to Assemblers

o Fundamental functions

Translate mnemonic operation codes to thelr
machine language equivalents

Assign machine addresses to symbolic labels used
by the programmer

0 The feature and design of an assembler depend
Source language It trandlate
The machine language It produce

2.1 Basic Assembler Functions

Assembler

= A program that accepts an assembly
language program as input and produces

Its machine language equivalent along with
Information for the loader

2.1 Basic Assembler Functions (Cont.)

0 Constructions of assembly language program

® |nstruction

Label mnemonic operand
o Operand

= Direct addressing
E.g. LDA ZERO
= |Immediate addressing
E.g. LDA #0
= Indexed addressing
E.g. STCH BUFFER, X
= Indirect addressing
E.g J @RETADR

2.1 Basic Assembler Functions (Cont.)

O Constructions of assembly language program (Cont.)

m Data
Label BYTE vaue
Label WORD value
Label RESB value
Label RESW vaue
L abel: name of operand
value: integer, character
E.g EOF BYTE CEOF
E.g. FIVE WORD 5

O O O 0O

Assembler Directives

O Pseudo-instructions
m Not trandated into machine instructions
m Provideinstructions to the assembler itsalf

O Basic assembler directives

= START: specify name and starting address of the program

= END: specify end of program and (option) the first executable
Instruction in the program

o If not specified, use the address of the first executable instruction
= BYTE: direct the assembler to generate constants
WORD

= RESB: : instruct the assembler to reserve memory location without
generating data values

m RESW

Example of a SIC Assembler
L anguage Program

O Show the generated object code for each statement in
-ig. 2.1

O Loc column shows the machine address for each

part of the assembled program

= Assume program starts at address 1000

= All instructions, data, or reserved storage are sequential
arranged according to their order in source program.

= A location counter isused to keep track the address
changing

Example of a SIC Assembler
L anquage Program (Fig 2.1,2.2)

Line Loc Source statement Object code
5 1000 CoPY ... START....... 1000.....
10 1000 FIRST “veren ST, RETADR. . 141033
15 1003 CLOOP ' JSUB RDREC "', 482039
20 1006 7 \LLEECEEEEEE TENGTH ™ 001036
25 1009 COMP ZERO 281030
30 100C TEQ.usnnnees .ENDEZIL 301015
35 100F ... JSUB WRREC - 482061
40 1012 J --------------- C]._:O.(:) -E-)---- 3(:1003
45 1015 ENDFIL LDA EOF 00102A
50 1018 STA BUFFER 0C1039
55 101B LDA THREE 00102D
60 101E LSTA e LENGTH 0C1036
65 1021 “LISYB...... WRREC [482061
70 1024 o LDL RETADR:-., 081033
75 1027 “...RSUB .. o 4C0000
80 102A EOF BY TR & TEOF 454F46
85 102D THREE WORD 3 000003
90 1030 ZERO WORD 0 000000
95 1033 RETADR RESW 1
100 1036 LENGTH RESW 1

105 1039 BUFFER RESB 4096

Example of a SIC Assembler
L anguage Program (Fig 2.1,2.2) (Cont.)

110 :

115 : SUBROUTINE TO READ RECORD INTO BUFFER
120 Jm——

125 2039 .. RDREC ./LDX ZERO 041030
130 203 LDA ZERO 001030
135 203F RLOOP D INPUT E0205D
140 2042 JEQ RLOOP 30203F
145 2045 RD INPUT D8205D
150 2048 COMP ZERO 281030
155 204B JEQ EXIT 302057
160 204E STCH BUFFER, X 549039
165 2051 TIX MAXLEN 2C205E
170 2054 JLT RLOOP 38203F
175 2057 EXIT .--STX™""*-.. LENGTH 101036
180 205A “._ RSUB .~ 4C0000
185 205D INPUT BYTETT XL Fl

190 205E MAXLEN WORD 4096 001000

1NC

Example of a SIC Assembler
L anguage Program (Fig 2.1,2.2) (Cont.)

195 .

200 . SUBROUTINE TO WRITE RECORD FROM BUFFER
205 “'u

210 2061 “.. WRREC _.‘LDX ZERO 041030
215 2064 WLOOPT D OUTPUT E02079
220 2067 JEQ WLOOP 302064
225 206A IDCH BUFFER,X 509039
230 206D WD OUTPUT DC2079
235 2070 TIX LENGTH 2C1036
240 2073 LT WLOOP 382064
245 2076 URSUB 4€0000
250 2079 OUTPUT BYTE X'05' 05

255 END FIRST

Figure 2.2 Program from Fig. 2.1 with object code.

—!

Functions of a Basic Assembler

0 Convert mnemonic operation codes to their machine
|anguage equivalents

E.g. STL -> 14 (line 10)

0 Convert symbolic operands to their equivalent
machine addresses

E.g. RETADR -> 1033 (line 10)
Build the machine instructions in the proper format

Convert the data constants to Internal machine
representations

E.g. EOF -> 454F46 (line 80)
O Write the object program and the assembly listing

O

O

12

Functions of a Basic Assembler (Cont.)

o All of above functions can be accomplished by
sequential processing of the source program
= Except number 2 in processing symbolic operands
0 Example

m 10 STL RETADR

o RETADRIisnot yet defined when we encounter STL
Instruction

o Cdled forward reference

13

Symbolic Operands (Renew)

o We’re not likely to write memory addresses
directly in our code.

= Instead, we will define variable names.
0 Other examples of symbolic operands
= Labels (for jJump instructions)

m Subroutines
m Constants

Address Trandation Problem

0O Forward reference

= A referenceto alabel that isdefined later in the
program
o Wewill be unable to process this statement
0 Asaresult, most assemblers make 2 passes
over the source program

m 1% pass. scan label definitions and assign addresses
m 27d pass: actual trandation (object code)

15

—!

Functions of Two Pass Assembler

0 Pass1 - definesymbols (assign addresses)
Assign addresses to all statements in the program

Save the values assigned to all labels for use in Pass 2
Process some assembler directives

O Pass?2 - assembleinstructions and generate object
program
Assemble instructions
Generate data values defined by BY TE, WORD, etc.
Process the assembler directives not done in Pass 1
Write the object program and the assembly listing

16

—————————————————————
ODbject Program

o Fnally, assembler must write the generated

object code to some output device
= Called object program

= Will belater loaded into memory for execution

17

—————————————————————
ODbject Program (Cont.)

0 Contains 3 types of records:
= Header record:

Col. 1 H
Col. 2-7 Program name
Col. 8-13 Starting address (hex)
Col. 14-19 L ength of object program in bytes (hex)
= Textrecord
Col.1 T
Col.2-7 Starting address in this record (hex)
Col. 89 L ength of object code in this record in bytes (hex)
Col. 10-69 Object code (hex) (2 columns per byte)
= Endrecord
Col.1 E
Col.2~7 Address of first executable instruction (hex)

(END program_name)

18

—!
Object Program for Fig 2.2 (Fig 2.3)

Program name, Starting address (hex),Length
of object program in bytes (hex)

1H@$0PY 001000001074

;QOIOOOIEI4103348203900103628103030101548206130100300102%90103900102Dé
T00101E15001036482061081033400000454F&6000003000000 ;
T0020391E041030001030E0205D30203FD8205D28103030205754903920205E38203FE

T002057101010364C0000F1001000041030E02079302064509039D02079201036

goozo7;pa;szoegﬁcoooqps
E001000

Starting address (hex),Length of object
code in this record (hex),Object code (hex)

19

corres
Address of first executable

instruction (hex)

2.1.2 Assembler Algorithm and Data
Structures

o Algorithm
= Two-pass assembler

o Data Structures
= Operation Code Table (OPTAB)
= Symbol Table (SYMTAB)
= Location Counter (LOCCTR)

20

|nternal Data Structures

0 OPTAB (operation codetable)

= Content
o Menmonic machine code and its machine language equivalent
o May asoinclude instruction format, length etc.

» Usage
o Pass 1: used to loop up and validate operation codes in the source
program

o Pass2: used to trandate the operation codes to machine language
= Characteristics

o Static table, predefined when the assembler is written
= |Implementation

o Array or hash table with mnemonic operation code as the key (preferred)
= Ref. Appendix A

21

Internal Data Structures (Cont.)

0 SYMTAB (symbol table)

= Content

o Label name and its value (address)

o May aso include flag (type, length) etc.
m Usage

o Passl: labelsare entered into SYMTAB with their address (from
LOCCTR) as they are encountered in the source program

o Pass 2: symbols used as operands are looked up in SYMTAB to
obtain the address to be inserted in the assembled instruction

= Characteristic
o Dynamic table (insert, delete, search)

= |mplementation
o Hashtablefor efficiency of insertion and retrieval

22

—————————————————————
Internal Data Structures (Cont.)

O Location Counter

= A variable used to help in assignment of
addresses

= Initialized to the beginning address specified in
the START statement

= Counted in bytes

23

Algorithm for 2 Pass Assembler (Fig
2.4)

0o Figure 2.4 (a): algorithm for pass 1 of
assembl er

0 Figure 2.4 (b): algorithm for pass 2 of
assembl er

Algorithm for 2 Pass Assembler (Fig
2.4)

Both passl and pass 2 need to read the
source program.

= However, pass 2 needs more information
o Location counter value, error flags

| ntermediatefile

= Contains each source statement with its assigned
address, error indicators, etc

= Used astheinput to Pass 2

25

———
|ntermediate File

Source mLABEL, OPCODE, OPERAND
Program

Passd | ntermediat Pass 2 Obj ect
assembler file ~ | assembler Program
LocctR | optAB| SYMTAB

26

Algorithm for Pass 1 of Assembler
(Fig 2.4a)

Pass 1:

begin
read first input line

save #[OPERAND] as starting address
initialize LOCCTR to starting address
write line to intermediate file
read next input line
end {if START}
else
initialize LOCCTR to O

hbegin
if this is not a comment l1line then
begin
if there is a svyvmbol in the LABEIL, field then
begin
Ssearch sSsyYyMIrars for LABEIL,
if found then
set errory flag (daplicate symbol)
else
insert (LARBREL, LOCCTR) into SYMTAB
end {if symbol}
search OPrPTAR for OPCODE
if found then
add 3 _ {imstruction. length} to LOCCTR
else if OPCODE = ‘WORD’ ! then
add 3..""'E:"o."".E&jé"é?j:.‘.ﬁ.""""""""""=
else if OPCODE = "“RESW’ then
add 3. .*. . #[ORPERANDI. .. Lo LOCCTR
else if OPCODE = ‘RESB’:then
add #[SBERANDI ES TOCCTR
else if OBCODE = “BYTE! then
find length of constant in bytes
add length to LOCCTR
end {if BYTE}
else
E set error flag (invalid operation code)
SR end {(if not a commentr .. .
Loawrikbelline ol dntermediate. . file. .

read next input line
end {while not END}

write last line to intermediate file
save (LOCCTR — starting address) as program length

end {Pass 17}

Figure 2.4(a) Algorithm for Pass 1 of assembler.

Algorithm for Pass 2 of Assembler
(Fig 2.4b)

Pass 2:

begin
read first input line {from intermediate file}

write listing line
read next input line
end {1f START}

1n1t1allze flrst Text record

e s ales ke — — — —

if this is not a comment line then
begin
search OPTAB for OPCODE
if found then

begin
if there is a symbol in OPERAND field then
begin
search SYMTAB for QOPERAND
if found then
store symbol value as operand address
else
begin
store 0 as operand address
set error flag (undefined symbol)
end
end {if symbocl}
else

store 0 as operand address
assemble the object code instruction
end {if..opcode..found}.....oe,
else if: OPCODE = ‘BYTE’ or ‘WORD’ then

initialize new Text record
end
add object code to Text record
end {if not comment}

write listing line

read next input line
vend {while not ENDY e, .
! write last Text record to object program
P write End record to cobject program :
writelastlistingline ... :

end {Pass 2}

Figure 2.4(b) Algorithm for Pass 2 of assembiler.

Assembler Design

0 Machine Dependent Assembler Features
= Instruction formats and addressing modes
= program relocation

O Machine Independent Assembler Features
= literds

symbol-defining statements

expressions

program blocks

control sections and program linking

0 Assembler design Options
= one-pass assemblers
= multi-pass assemblers

31

2.2 Machine Dependent Assembl er
Features

0 Machine Dependent Assembler Features
= SIC/XE
= Instruction formats and addressing modes
= Program relocation

32

e
SIC/XE Assembler

0 Previous, we know how to implement the 2-
pass SIC assembler.

o What’s new for SIC/XE?

= More addressing modes.
= Program Relocation.

e
SIC/XE Assembler (Cont.)

o SIC/XE
= |Immediate addressing: op #c
= Indirect addressing: op @m
= PC-relative or Base-relative addressing: op m

o Theassembler directive BASE is used with base-relative addressing

o If displacements are too large to fit into a 3-byte instruction, then 4-byte
extended format is used

= Extended format: +0p m

= Indexed addressing: op m, X
= Register-to-register instructions

= Large memory

o Support multiprogramming and need program reallocation capability

34

Example of a SIC/XE Program (Fig
2.5)

O Improve the execution speed
= Register-to-register instructions

= |Immediate addressing: op #c
o Operand isaready present as part of the instruction

= Indirect addressing: op @m
o Often avoid the need of another instruction

35

Example of a SIC/XE Program (Fig
2.5,2.6)

Line

10
12
13
15
20
25
30
35
40
45
50
bh
60
65
70
80
25
100
105

a4~

Loc

C000
0000
0003

0006
000A
000D
0010
0013
0017
001lA
CO1D
0020
0023
0026
002A
002D
0030
0033
0036

Source statement

COFY START 0
FIRST ST lucereremens RETADR,
“e.. LDB #LENGTH..*
BASE...L....LENGTH
CLOOP ... +JSUB RDREC it
I E R B ey
LM HO e -
TEQvuneemess ENDEIL
£ JSUB WRREC 7
.j! lllllllllllllll CE@(‘D“E‘)
ENDFIL, LDA EOF
=y N BUEEER
$Ioa #3 o
SR LR
TUETSUR, .. JRRECT
i GRETADR "%
EOF B_;-r:]':llEl: ---------- -Cl .f..E‘.lOF e
RETADR RESW 1
LENGTH RESW 1
BUFFER RESB 4096

- Object code

17202D
69202D

4B101036
032026
290000
332007
4B10105D
3F2FEC
032010
0F2016
010003
QF200D
4B10105D
3E2003
454F46

Example of a SIC/XE Program (Fig
2.5,2.6) (Cont.)

110 .

118 ‘ SUBROUTINE TO READ RECORD INTO BUFFER
120 .

125 1036 RDREC CLEAR X B410

130 1038 CLEAR A B400

132 103A CLEAR......8...... Bl

133 103C SUYLDT #4096 75101000
135 1040 RLOOP TD T INPUT E32019
140 1043 JEQ RLOOP 332FFA
145 1046 RD INPUT DB2013
150 1049 COMPR A,S A0O4

155 104B JEQ EXTT 332008
160 104E STCH BUFFER, X 57003
165 1051 TIXR T B850

170 1053 JLT RLOOP 3B2FEA
175 1056 EXIT STX LENGTH 134000
180 1059 RSUB 4F0000

185 105C INPUT BYTE XrFL’ Fl

a nr

Example of a SIC/XE Program (Fig
2.5,2.6) (Cont.)

195 .

200 5, SUBROUTINE TO WRITE RECORD FROM BUFFER
205 .

210 105D WRREC CLEAR X B410
212 105F LDT LENGTH 774000
215 1062 WLOQP D OUTPUT E320)L]
220 1065 JEQ WLOOP 332FFA
225 1068 LDCH BUFFER, X 53C003
230 106B WD OUTPUT DF2008
233 106E TIXR T B850
240 1070 JLT WLOOP 3B2FEF
245 1073 RSUB 4F0000
250 1076 OUTPUT BYTE X5’ 05

455 END FIRST

Figure 2.6 Program from Fig. 2.5 with object code.

2.2.1 Instruction Formats and
Addressing Modes

0 START now specifies abeginning program
address of O

= Indicate arelocatable program

0 Register trandlation
= For example: COMPR A, S=> A004
= Must keep theregister name (A, X, L, B, S, T,
5,6, 8

F,

PC, SW) and their values (0,1, 2, 3,4, 5, 6, 8, 9)

o Kegpin SYMTAB

39

—!
Address Translation

O Most register-to-memory instructions are assembled
using PC relative or base relative addressing

Assembler must calculate a displacement as part of the
object instruction

If displacement can be fit into 12-bit field, format 3 is used.

Format 3: 12-bit address field
o Basereative: 0~4095
o PC-rdative: -2048~2047

Assembler attempts to translate using PC-relative first, then
base-relative

o If displacement in PC-relative is out of range, then try base-relative

40

—————————————————————
Address Translation (Cont.)

= |f displacement can not be fit into 12-bit field In
the object instruction, format 4 must be used.
o Format 4: 20-bit address field

o No displacement need to be calculated.
= 20-bit islarge enough to contain the full memory address

Programmer must specify extended format: +op m

For example: +JSUB RDREC => 4B101036
= LOC(RDREC) = 1036, get it from SYMTAB

41

—!
PC-Relative Addressing Modes

O 10 0000 FIRST STL RETADR 17202D
Displacement= RETADR — (PC) =30-3=2D
Opcode (6 bits) =14,,=00010100,

nixbpe=110010
o n=1,1=1:indicate neither indirect nor immediate addressing
o p=1:indicate PC-relative addressing

‘OPCODE‘n‘i‘x‘bne‘ Address

[oooror [1]1]ofofWo] (p),]
Object Code = 17202D

42

PC-Relative Addressing Modes (Cont.)

o 40 0017 J CLOOP SF2FEC
= Displacement= CLOOP- (PC)=6-1A =-14=FEC (2's
complement for negative number)
= Opcode=3C,; = 00111100,
= nixbpe=110010

‘OPCODE‘n‘i‘x‘bne‘ Address ‘

[01111 [1]1]oJoffMo] (ec),, |
Object Code = 3F2FEC

43

—————————————————————
Base-Relative Addressing Modes

0 Baseregister isunder the control of the

programmer

= Programmer use assembler directive BASE to specify which
value to be assigned to base register (B)

= Assembler directive NOBASE: inform the assembler that the
contents of base register no longer be used for addressing

= BASE and NOBASE produce no executable code

44

Base-Relative Addressing Modes

(Cont.)

o 12 LDB #LENGTH
o 13 BASE LENGTH ;no object code
o 160 104E STCH BUFFER, X 57C003

Displacement= BUFFER — (B) = 0036 — 0033(=LOC(LENGTH)) =3
Opcode=54=01010100

nixbpe=111100

O n=1, i = 1. indicate neither indirect nor immediate addressing
o X =1:indexed addressing

O b = 1: base-relative addressing

‘OPCODE‘n‘i‘xnp‘e‘ Address ‘
[w0101 [1]1[1 Moo (003,]
Object Code = 57C003

45

e
Address Trandation

O Assembler attempts to translate using PC-relative
first, then base-relative

= eg. 175 1056 STX LENGTH 134000
o Try PC-relative first
m Displacement= LENGTH - (PC) = 0033 - 1056 = -1026 (hex)
o Try base-relative next
m displacement= LENGTH — (B) = 0033 — 0033 =0
= Opcode=10
= nixbpe=110100
n=1, 1 = 1. indicate neither indirect nor immediate addressing
b = 1. base-relative addressing

46

—!
|mmediate Address Trand ation

0 Convert the immediate operand to its internal
representation and insert it into the instruction

o 55 0020 LDA #3 010003
Opcode=00
nixbpe=010000

o |1 =1 immediate addressing

‘OPCODE‘nnx‘b‘p‘e‘ Address ‘

[000000 [o¥o]ofoJo] (003,]
Object Code = 010003

a7

Immediate Address Trandlation (Cont.)

o 133 103C +LDT #4096 /5101000
» Opcode=74=01110100
= nixbpe=010001

o 1 =1 immediate addressing
o e=1: extended instruction format since 4096 is too large to fit
Into the 12-bit displacement field

‘OPCODE‘nnx‘b‘pE Address ‘

[011101 [oWoJo]o] (01000, |
Object Code = 75101000

48

Immediate Address Trandlation (Cont.)

o 12 0003 LDB #LENGTH 69202D

= Theimmediate operand isthe symbol LENGTH
o Theaddressof LENGTH isloaded into register B

Displacement=LENGTH — (PC) = 0033 — 0006 = 02D
Opcode=68,; = 01101000,

nixbpe=010010
o Combined PC relative (p=1) with immediate addressing (i=1)

‘ OPCODE ‘ n e‘ Address ‘
[012010 [0 ol (), |

49

e
|ndirect Address Trand ation

0 Indirect addressing

= The contents stored at the location represent the
address of the operand, not the operand itself

= Target addressing is computed as usual (PC-
relative or BASE-relative)

m nbhitissetto 1

50

Indirect Address Translation (Cont.)

o /0 002A J @RETADR 3E2003
= Displacement= RETADR- (PC) = 0030 — 002D =3
= Opcode= 3C=00111100
= nixbpe=100010

o n=1:indirect addressing
o p=1: PC-relative addressing

[opcope [l i [x[o M e] Address]
[01111 [l ofoJofMo] (003,]

51

Note
0 Ref: Appendix A

e
2.2.2 Program Relocation

o Thelarger main memory of SIC/XE

= Severa programs can be loaded and run at the same time.
= Thiskind of sharing of the machine between programsis

called multiprogramming
0 Totake full advantage
= Load programs into memory wherever there is room
= Not specifying afixed address at assembly time
= Cadled program relocation

53

2.2.2 Program Relocation (Cont.)

0 Absolute program (or absolute assembly)

= Program must be loaded at the address specified at assembly time.

= EgFg21 program |oading
pa— starting address 1000

COPY START 1000

FIRST STL RETADR

o eg.55 101B LDA THREE 00102D

= What if the program is loaded to 2000

eg.55 101B LDA THREE 00202D
o Each absolute address should be modified

54

Example of Program Relocation (Fig
2.7)

4B101036

(1)
F-S
-

280000 o 800 ol..!

(+JSUB RDREC)

4+—RDREC

5000

5006

2

36

o...l.

(a)

Figure 2.7 Examples of program

4B10

[+2]

036

B410

0080

<4— RDREC

(b)

relocation.

(+JSUB RDREC)

7420

7426

o4}
‘sonee #l""
[0}

®
b
©
[+)]

4B108456

B41

see9ee L= FYTIYS

(+JSUB RDREC)

l«— RDREC

(©

—————————————————————
2.2.2 Program Relocation (Cont.)

O Relocatable program| copy START o<« Programloading

FIRST STL RETADR| S@atingaddressis
: determined at |oad

time

= An object program that contains the information necessary to perform
address modification for relocation

= Theassembler must identify for the loader those parts of object
program that need modification.

= No instruction modification is needed for
o Immediate addressing (not a memory address)
o PC-relative, Base-relative addressing

= Theonly parts of the program that require modification at load time
are those that specify direct addresses

o In SIC/XE, only found in extended format instructions

56

|nstruction Format vs. Relocatable
L oader

O InSIC/XE
= Formatl, 2, 3
o Not affect

= Format 4
o Should be modified

O InSIC

m Format with address field

o Should be modified
o SIC does not support PC-relative and base-relative addressing

57

e ————————————————————————
Rel ocatable Program

O We use modification records that are added to the
object files.

et o o

O Modification record
= Coll M
= Col 2-7 Starting location of the addressfield to be
modified, relative to the beginning of the program (hex)
= Coal 8-9 length of the address field to be modified, in half-bytes
= E.g M.000007.05

Beginning address of the program isto be added to afield that begins
at addr 0x000007 and is 2.5 bytes in length.

e
Object Program for Fig 2.6 (Fig 2.8)

HCOPY 000000001077

ET0000001D17202D69202D4B1010360320262900003320074B101059@F2FECO32010 :

ETOOOOlDl30F20160l00030F200D4B10105D3E2003454F46 :
§T0010361D3a105400344075101000E32019332FF5932013A0043320085700033850 §
ET0010531D3B2FEA1340004F0000F1B410774000E32011332FFA53COO3DF20083850 §

. T001070073B2FEE4AF000005

400000705
. M00001405
- 400002705

quOOOO

Figure 2.8 Object program corresponding to Fig. 2.6.

2.3 Machine-Independent Assembler

Features

O
O
O
O
O

Literals

Symbol-Defining Statements
Expressions

Program Blocks

Control Sections and Program Linking

e
2.3.1 Literals

0 Designidea
= Let programmersto be able to write the value of a
constant operand as a part of the instruction that usesiit.

= Thisavoids having to define the constant €l sewhere in the
program and make up alabel for it.

= Such anoperand iscalled aliteral because the valueis
stated “literally” in the instruction.

= A literd isidentified with the prefix =
O Examples

= 45 O0O1A ENDFILLDA =CEOF 032010
= 215 1062 WLOOPTD =X"05 E32011

61

e —————————————————————
Orlglnal Program (Flg 2.0)

0000 COPY START

lO 0000 FIRST STL RETADR 17202D
12 0003 LDB #LENGTH 69202D
13 BASE LENGTH

15 0006 CLOOP +JSUB RDREC 4B101036
20 000A LDA LENGTH 032026
25 000D COMP #0 290000
30 0010 JEQ ENDFIL 332007
a5 0013 +JSUB WRREC 4B10105D
40 0017 J CLOOP 3FAFEC
45 001A ENDFIL LDA EQF 032010
50 001D STA BUFFER 0F2016
55 0020 LDA #3 010003
60 0023 STA LENGTH 0F200D
65 0026 +JSUB WRREC 4B10105D
70 002A J @RETADR 3E2003
80 002D EOF BYTE C'EOF ‘ 454F46
95 0030 RETADR RESW 1
100 0033 LENGTH RESW 1
105 0036 BUFFER RESB 4096

110

Using Literal (Fig. 2.9)

5
10
13
14
15
20
25
30
2D
40
45
50
59
60
65
70
93
95

100
105
106
107

CQPY,
FIRST

CLOOP

ENDFIL

RETADR
LENGTH
BUFFER
BUFEND
MAXLEN

START 0

STL RETADR
LDB #LENGTH
BASE LENGTH
+JSUB RDREC
LDA LENGTH
COMP #0

JEQ ENDFIL
+JSUB WRREC
J CLOOP
LDA =C'EOF’
STA BUFFER
LDA #3

STA LENGTH
+JSUB WRREC
J @RETADR
~LLORC

RESW 1

RESW 1

RESB 4096
EQU -

BUFEND-BUFFER

COPY FILE FROM INPUT TO OUTPUT
SAVE RETURN ADDRESS
ESTABLISH BASE REGISTER

READ INPUT RECORD
TEST FOR EOF (LENGTH = 0)

EXIT IF EOF FOUND

WRITE OUTPUT RECORD

LOOP

INSERT END OF FILE MARKER
SET LENGTH = 3

WRITE EOF

RETURN TO CALLER

LENGTH OF RECORD
4096-BYTE BUFFER AREA

MAXIMUM RECORD LENGTH

———
Obj ect Program Us ng Literal

10
13
14
15
20
25
30
35
40
45
50
55
60
65
70
93

95

0000
0000
0003

0006
000A
000D
0010
0013
0017
001A
001D
0020
0023
0026
002A

002D
0030

COPY
FIRST

CLOOP

ENDFIL

RETADR

START
STL RETADR 17202D
LDB #LENGTH 69202D
BASE LENGTH
+JSUB RDREC 4B101036
LDA LENGTH 032026
COMP #0 290000
JEQ ENDFIL 332007
+JSUB WRREC 4B10105D
J CLOOP 3F2FEC
_LDA =C'EQF’ 032010
STA BUFFER 0F2016
LDA #3 00003
STA LENGTH F200D
+JSUB WRREC B10105D
J @RETADR E2003
LTORG | The same as before by
=C'EOF ' 454F46

RESW

1

e —————————————————————
Original Program (Fig. 2.6)

205 :

210 105D WRREC CLEAR X B410
212 105F LDT I,ENGTH 774000
215 1062 WLOOP D QUTPUT E32011
220 1065 JEQ WLOOP 332FFA
225 1068 LDCH BUFFER, X 53C003
230 106B WD QUTPUT DEF2008
235 106E TIXR T B850
240 1070 JLT WLOOP 3B2FEF
245 1073 RSUB 4F0000
250 1076 QUTPUT ___ BYTE X' 05" 05

255 END FIRST

65

Using Literal (Fig. 2.9)

D5
200
205
210
il
215
220
e
230
L
240
245
892

WRREC

WLOOP

SUBROUTINE TO WRITE RECORD FROM BUFFER

CLEAR X

LDT LENGTH
TD =X’ 05’
JEQ WLOOP
,DCH BUFFER, X
WD =X’ 05’
TIXR T

JLT WLOOP
RSUB

END FIRST

CLEAR LOOP COUNTER

TEST OUTPUT DEVICE

LLOOP UNTIL READY

GET CHARACTER FROM BUFFER

WRITE CHARACTER

LOOP UNTIL ALL CHARACTERS
HAVE BEEN WRITTEN

RETURN TO CALLER

66

———
Object Program Using Literal

AV

210 105D WRREC CLEAR X B410

212 105F LDT LENGTH 774000
3 1 1062 WLOOP i =X'08! E32011
220 1065 JEQ WLOOP 32FFA
225 1068 LDCH BUFFER, X FBCODB
230 106B WD =X’ 05 DF2008
235 106E TIXR T B&50
240 1070 JLT WLOQP B2FEF
245 1073 RSUB | The same as before 4F0000
255 END FIRST \

1076 " =X'05" 05

67

ODpject Program Using Literal (Fig 2.9
& 2.10)

Line Loc Source statement Object code
5 0000 COPY START 0

10 0000 FIRST STL RETADR 17202D

13 0003 LDB #LENGTH 69202D

14 BASE LENGTH

15 0006 CLOOP +JSUB RDREC 4B101036

20 000A LDA LENGTH 032026

25 000D COoMP #0 290000

30 G010 JEQ ENDFTIL 332007

35 0013 +JSUB WRREC 4B10105D
..... 40 Q0L T e e W GEQOE D RAE EC
1 45 001A ENDFIL LDA =C’'EOF’ 032010 7
...... B Ly e e AT g g et

55 0020 LDA #3 010003

60 0023 STA L.ENGTH OF200D

65 0026 +JSUB WRREC 4B10105D
TS S R AR CRETADR e 3E2003

53 L L L :
SRR 1o« SR . SCUBOE e 454F46
P P i Tt sersessn AR
100 0033 LENGTH RESW !

6 - QA36...cueeue BUEEER....... RESB.....uuus 2 e .
106 1036 BUFEND EQU *
LA I 6) A 10Q00......... MAXLEN....... 12X ©) 6 IR BUFENR-BUFREFER ...

——————————
Object Program Using Literal (Fig 2.9

& 2.10) (Cont.)

110 .
115 . SUBROUTINE TO READ RECORD INTO BUFFER
120 :

125 1036 RDREC CLEAR X B410

130 1038 CLEAR A B400

132 103A CLEAR S B440

133 103C +LDT #MAXT.EN 75101000
135 1040 RLOOP D INPUT E32019

140 1043 JEQ RLOOP 332FFA

145 1046 RD INPUT DB2013

150 1049 COMPR A,S A004

155 104B JEQ EXIT 332008

160 104E STCH BUFFER, X 57C003

165 1051 TIXR T B850

170 1053 JLT RLOOP 3B2FEA

175 1056 EXIT STX LENGTH 134000

180 1059 RSUB 4F0000

185 105C INPUT BYTE X'F1’ F1

10AR

——————————
Object Program Using Literal (Fig 2.9

& 2.10) (Cont.)

1835

200 : SUBROUTINE TO WRITE RECORD FROM BUFFER

205 .

210 105D WRREC CLEAR X B410
212 TOSE LDr .. LENGTH 774000
;215 1062 WLOOP D =XU05' E32017

203 3002 M S S—
225 1068 o ICE | BUFFER, X 53C003
230 08B WD e TR0 DEZ008

20...... 1068 T L I—.

240 1070 JLT WLOOP 3B2FEF

245 1073 RSUB 4F0000

Figure 2.10 Program from Fig. 2.9 with object code.

Literals vs. Immediate Operands

O Immediate Operands

= The operand value is assembled as part of the machine instruction
m eg.55 0020 LDA #3 010003

_ Similar to define
O Literas constant

= The assembler generates the specified value as a constant at some
other memory location

= Theeffect of using aliteral is exactly the same as if the programmer
had defined the constant and used the label assigned to the constant as
the instruction operand.

= eg.45 O001A ENDFIL LDA =CEOF 032010 (Fig. 2.9)
0 Compare (Fig. 2.6)
= eg.45 O001A ENDFIL LDA EOF 032010

80 002D EOF BYTE CEOF 454F46 71

Literal - Implementation

O Literal pools

= All of the literal operands are gathered together
Into one or more literal pools

= Normally, literal are placed at the end of the
object program, i.e., following the END statement
by the assembl er

= E.g., Hg. 2.10 (END statement)
255 END FIRST
1076 * =X"05’ 05

72

Literal — Implementation (Cont.)

= |nsome case, programmer would like to placeliteralsinto a
pool at some other location in the object program
o Using assembler directive LTORG (see Fig. 2.10)
o Create aliteral pool that contains all of the literal operands used

since the previous LTORG
o eg.,45 001A ENDFIL LDA =CEOF 032010 (Fig.2.10)
93 LTORG
002D * =C'EOF 454F46

o Reason: keep the literal operand close to the instruction referencing
It
= Allow PC-relative addressing possible

73

Literal - Implementation (Cont.)

O Duplicateliterals
e.g.215 1062 WLOOP TD =X"05
e.g. 230 106B WD =X05
The assemblers should recognize duplicate literals and
store only one copy of the specified data value
o Compare the character strings defining them

E.g., =X’05’
Easier to implement, but has potential problem (see next)
Same Or compare the generated data value
symbols, E.g.the literdls =C'EOF’ and =X'454F46’ would specify identical
only one operand value.
addressis Better, but will increase the complexity of the assembler

_assigned)

74

Basic Data Structure for Assembler to
Handle Literal Operands

o Data Sructure: literal table- LITTAB

= Content

o Literal name

o Theoperand value and length

o Address assigned to the operand
= Implementation

o Organized as a hash table, using literal name or value
as key.

75

How the Assembler Handles Literal s?

O Passl

= Build LITTAB with literal name, operand value and length, (leaving
the address unassigned).

Handle duplicate literals. (Ignore duplicate literals)

= When encounter LTORG statement or end of the program, assign an
address to each literal not yet assigned an address

o Remember to update the PC value to assign each literal’s address
O Pass?2
= Search LITTAB for each literal operand encountered

= Generate datavaluesin the object program exactly asif they are
generated by BY TE or WORD statements

= Generate modification record for literals that represent an addressin
the program (e.g. alocation counter value)

76

e
2.3.2 Symbol-Defining Statements

O Labelson instructions or data areas

= Thevaue of such alabel isthe address assigned to the
statement on which it appears

0 Defining symbols
= All programmer to define symbols and specify their values
= Format: symbol EQU value

o Vaue can be constant or expression involving constants and
previously defined symbols

= Example
o MAXLEN EQU 4096
m +LDT #MAXLEN

77

2.3.2 Symbol-Defining Statements
(Cont.)

0 Usage:
Make the source program easier to understand
0 How assembler handles it?

In pass 1. when the assembler encounters the
EQU statement, it enters the symbol into
SYMTARB for later reference.

In pass 2: assemble the instruction with the value
of the symbol

o Follow the previous approach

78

Examples of Symbol-Defining
Statements

O E.g.+LDT #4096 (Fig2.5)
= MAXLEN EQU 4096

o +LDT #MAXLEN
O E.g. define mnemonic names for registers
= A EQU O
= X EQU 1
= L EQU 2

0 E.g. define names that reflect the logical function of the
registersin the program
= BASE EQU R1
= COUNT EQU R2
= INDEX EQU R3

79

Forward Reference

o All symbol-defining directives do not allow
forward reference for 2-pass assembl er

= eg., EQU...

= All symbols used on the right-hand side of the
statement must have been defined previously

E.g. (Cannot be assembled in 2-pass assm.)
ALPHA EQU BETA

BETA EQU DELTA
DELTA RESW]

80

—!

2.3.3 Expressions

0 Most assemblers allow the use of expression to
replace symbol in the operand field.
Expression is evaluated by the assembler
Formed according to the rules using the operators
+1 -1 *1 /
o Divisionisusually defined to produce an integer result

o Individua terms can be
Constants

User-defined symbols
Specia terms: e.g., * (= current value of location counter)

81

2.3.3 Expressions (Cont.)

0 Review

= Valuesin the object program are
o relative to the beginning of the program or
o absolute (independent of program |location)

= For example

o Constants: absolute
o Labds: reative

82

e
2.3.3 Expressions (Cont.)

O EXxpressionscan also be classified as absolute
expressions or relative expressions
= E.g. (Fig2.9)
107 MAXLEN EQU BUFEND-BUFFER

o Both BUFEND and BUFFER are relative terms, representing
addresses within the program

o However the expression BUFEND-BUFFER represents an
absolute value: the difference between the two addresses
= When relative terms are paired with opposite Signs
o The dependency on the program starting address is canceled out
o Theresult isan absolute value

83

e
2.3.3 Expressions (Cont.)

0O Absolute expressions
= Anexpression that contains only absolute terms

= Anexpression that contain relative terms but in pairs and
the terms in each such pair have opposite signs

O Relative expressions

= All of the relative terms except one can be paired and the
remaining unpaired relative terms must have a positive
Sgn
0 No relative terms can enter into amultiplication or
division operation no matter in absolute or relative
expression

84

e
2.3.3 Expressions (Cont.)

O Errors. (represent neither absolute values nor
locations within the program)
= BUFEND+BUFFER /I not opposite terms

= 100-BUFFER // not In pair

= 3*BUFFER // multiplication

85

2.3.3 Expressions (Cont.)

0 Assemblers should determine the type of an
expression
m Keep track of the types of all symbols defined in
the program in the symbol table.

= Generate Modification records in the object
program for relative values.

Symbol Type Vaue
RETADR R 30
SYMTAB for Fig. 210 BUFFER R 36
BUFEND R 1036
MAXLEN A 1000

86

e
2.3.4 Program Blocks

O Previously, main program, subroutines, and data area are
treated as a unit and are assembled at the same time.

= Although the source program logically contains subroutines, data area,
etc, they were assembled into asingle block of object code

= Toimprove memory utilization, main program, subroutines, and data
blocks may be allocated in separate areas.
O Two approachesto provide such aflexibility:
= Program blocks
o Segmentsof code that are rearranged within a single object program unit

m Control sections

o Segmentsof code that are trandated into independent object program
units

87

e
2.3.4 Program Blocks

0 Solution 1. Program blocks

= Refer to segments of code that are rearranged within a
single object program unit

= Assembler directive: USE blockname
o Indicates which portions of the source program belong to which
blocks.

Codes or data with same block name will allocate together

At the beginning, statements are assumed to be part of the
unnamed (default) block

= |f no USE statements are included, the entire program
belongs to this single block.

88

e
2.3.4 Program Blocks (Cont.)

0 E.g:Figure21l

m Three blocks

o First: unnamed, i.e., default block
m Line5~Line70+ Line123 ~Line180 + Line 208 ~ Line 245

o Second: CDATA
m Line92~Linel00+ Line183~Linel185+ Line252 ~ Line 255

o Third: CBLKS
m Linel03~Line107
= Each program block may actually contain several
separ ate segments of the source program.

= The assembler will (logically) rearrange these segments to
gather together the pieces of each block.

89

Program with Multiple Program
Blocks (Fig 2.11 & 2.12)

Line

Loc/Block

0000
0000
0003
0006
0009
000C
000F
0012
0015
0018
001B
001E
0021

OCOO0OOCOoOO0OO0OO0O0OOC0O0O

Source statement

COPY
FIRST
CLOOP

ENDFIL

START 0

STL RETADR
JSUB RDREC
LDA LENGTH
COMP #0.

JEQ ENDFIL
JSUB WRREC
J - CLOOP
LDA =C’'EQF’
STA BUFFER
LDA #3

STA LENGTH
JSUR WRREC
J @RETADR
USE CDATA
R e o
RESW..cccenees

USE CBLKS
RESB 4096
EQU *

EQU BRUFEND-BUFFER

Object code

172063
4B2021
032060
290000
332006
4B203B
SFZFEE
032055
OF2056
010003
OF2048
4B2029

Program with Multiple Program
Blocks (Fig 2.11 & 2.12) (Cont.)

110

115 . SUBROUTINE TO READ RECORD INTO BUFFER
120

."1.?} G i sy
o T = TR e LT
130 0029 O CLEAR A B400

132 002B O CLEAR S B440

133 002D O +LDT #MAXT.EN 75101000
135 0031 O RLOOP TD TNPUT E32038
140 0034 O JEQ RLOOP 332FFA
145 0037 O RD INPUT DB2032
150 003a O COMPR A,S A004

155 003C 0 JEQ EXIT 332008
160 003F O STCH BUFFER, X 57A02F
165 0042 0 TIXR i B850

170 0044 0 JLT RLOOP 3B2FEA
175 0047 O EXIT STX LENGTH 13201F
180! 004A .0 oo,) 4F0000
183 L S USE CDATA
i v e i s P

Program with Multiple Program
Blocks (Fig 2.11 & 2.12)

125
200 . SUBROUTINE TO WRITE RECORD FROM BUFFER
205
£.208........ 004D 0 . USE oo
208 004D...0 — T ———
212 004F O LDT LENGTH 772017
215 0052 O WLOOP TD =X'05" E3201B
220 0055 0 JEQ WLOOP 332FFA
280 0058 O L.DCH BUFFER, X 53A016
230 005B O WD =X'05" DF2012
235 O05E O TIXR T B850
240 0060 O JLT WLOOP 3B2FEF
245 .. 0063 0 RSUB 4F000
TR 30 R — A R ..)
R —— oS
0007 1 * =C’EQOF 454F46
oooAa 1 ¥ =X’'05" 05
255 END FIRST

Figure 2.12 Program from Fig. 2.11 with object code.

Basic Data Structure for Assembler to
Handle Program Blocks

0 Block name table
= Block name, block number, address, length

Block name Block number = Address = Length
(default) 0 0000 0066
CDATA 1 0066 000B
CBLKS 2 0071 1000

93

How the Assembler Handles Program
Blocks?

O Passl
Maintaining separate location counter for each program
block
Each label is assigned an address that is relative to the
start of the block that contains it
When labels are entered into SYMTAB, the block name
or number Is stored along with the assigned relative
addresses.
At the end of Pass 1, the |atest value of the location
counter for each block indicates the length of that block
The assembler can then assign to each block a starting
address in the object program

94

How the Assembler Handles Program
Blocks? (Cont.)

O Pass?2

The address of each symbol can be computed by
adding the assigned block starting address and
the relative address of the symbol to the start of
Its block

o The assembler needs the address for each symbol
relative to the start of the object program, not the start
of an individual program block

95

Table for Program Blocks
0 Attheendof Pass1inFig 2.11:

Block name Block number Address Length

(default) 0 0000 0066
CDATA 1 0066 000B
CBLKS 2 0071 1000

96

—!
Example of Address Calculation

0 Eachsourcelineisgiven arelative address assigned and a
block number
Loc/Block ColumninFig. 2.11

0 For an absolute symbol (whose value is not relative to the start
of any program block), there is no block number
E.g. 107 1000 MAXLEN EQU BUFEND-BUFFER

0 Example calculation of addressin Pass 2
20 0006 O LDA LENGTH 032060
LENGTH = (block 1 starting address)+0003 = 0066+0003= 0069
LOCCTR = (block 0O starting address)+0009 = 0009
PC-relative: Displacement = 0069 - (LOCCTR) = 0069-0009=0060

97

e
2.3.4 Program Blocks (Cont.)

O Program blocks reduce addressing problem:

= No needs for extended format instructions (lines 15, 35, 65)
o Thelarger buffer is moved to the end of the object program

= No needsfor baserelative addressing (line 13, 14)
o Thelarger buffer is moved to the end of the object program

= LTORG isusedto make surethe literals are placed ahead
of any large data areas (line 253)
o Prevent literal definition from its usage too far

98

e
2.3.4 Program Blocks (Cont.)

0 Object code

= [tisnot necessary to physically rearrange the generated
code in the object program to place the pieces of each
program block together.

= Loader will load the object code from each record at the
Indicated addresses.

O For example (Fig. 2.13)
= Thefirst two Text records are generated from line 5~70

= When the USE statement is recognized

o Assembler writes out the current Text record, even if there still
room leftin it

o Beginanew Text record for the new program block

99

ODpject Program Corresponding to Fig.
2.11 (Fig. 2.13)

HACOPY A000000A001071

TAOOOOOOAI EA172063A4B202 1A032060A290000A332006A4B203BA3F2FEEA032055A0F2056A010003

TAOOOOIEA09A0F2048A4B2029A3E203F

T/\OOOON/\“%M10/\3400/\3440/\75101OOOAE32038A332FFP5P32032/\A004/\332008A57A02FAB850

T000044A09A3B2FEAA1 3201 I';\AFO 000

e vyl o Yo e R A it Yoo

L000eDOSARAe0S

E000000

Figure 2.13 Object program corresponding to Fig. 2.11.

Program blocks for the Assembly and
L oading Processes (Fig. 2.14)

Source program

Lina
<]

J0

100
105

125

180
185

210

245
253

Default(1)

CDATA(1)

/

same
order

CBLKS{1)

Default{2)

CDATA(Z)

Defauit{3)

CDATA(3)

Program loaded

Object program

In memory

Default{1) | Default{l)
Default(2) i Default(2)
COATA(2)

Defaull(3)
Default(3)

CDATA(1)
CDATA(3) CDATA(2)

Rearrangemgnt

through loading

CBLKS(1)

Relative
address
[alnleln]

on27

co4D

0066

o0aecC

oosD
0071

1070
101

Figure 2.14 Program blocks from Fig. 2.11 traced through the assem-

bly and loading processes.

2.3.5 Control Sections ana Program

Linking

0 Control sections

= A part of the program that maintains its identity
after reassembly

0 Each control section can be loaded and relocated
Independently

o Programmer can assemble, load, and manipulate each
of these control sections separately

= Often used for subroutines or other logical
subdivisions of aprogram

102

2.3.5 Control Sections and Program

Linking (Cont.)

O Instruction in one control section may need to refer
to Instructions or data located 1n another section

Cadlled external reference

0 However, assembler have no idea where any other
control sections will be located at execution time

O The assembler has to generate information for such
kind of references, called external references, that
will allow the loader to perform the required linking.

103

Program Blocks v.s. Control Sections

0 Program blocks

= Refer to segments of code that are rearranged
with a single object program unit

0 Control sections

= Refer to segmentsthat are translated into
Independent object program units

104

[llustration of Control Sections and
Program Linking (Fig 2.15 & 2.16)

Line oc urce statement

First control section: COPY ‘/ Implicitly defined as an external symbol
k 3] T o .

| Define external symbols

saresrsssassssnnsans START....... I I A .
BUFFER, BUFEND, LENGTH .

External *

4

#0 290000

Jeference o0000 ... ENDFIL 332007
Ao G s TR T R T .
‘"""""""""40 CLCDP.......................GFZFEG
45 0017 ENDFIL LDA =C’EOQF"’ 032016
50 001A STA BUFFER 0F2016
55 001D LDA 43 010003
.................. s [ARRRY o VYo ¥ MR R R RRR = ¢ SRR)/ \ (.15 1, > SRR 6) 1710 1 0 V- S,
S (T 010 . £ €= 1) = S, WRRE G e veennrnnenns 4B100000
70 0027 J @RETADR 3E2000 T
95 002A RETADR RESW 1
100 002D LENGTH RESW 1
103 LTORG
0030 * =C' EOF’ AS4FA6
105 0033 BUFFER RESB 4096
106 1033 BUFEND EQU *

107 1000 MAXLEN EQU BUFEND-BUFFER

————————————————————
| llustration of Control Sections and

Program Linking (Fig 2.15 & 2.16) (Cont.)

...Second control section: RDREC | ..

........ g B - e od control section: RDREC,
........ S ds GBSO
115 SUBRROUTINE TO READ RECORD INTO BUFFER
...... e
....... 122 i, TREF BUFFER, LENGTH, BUFEND ‘
122 TR K EEn . BOREER, DENGTH, ROFEN g
130 0002 FAR A B400
132 0004 External | o par B440
133 0006 | reference | 1nom MAXLEN 77201F
135 0009 RLOOP ™ INPUT E3201B
140 000C JEQ RILOOP 332FFA
145 000F RD INPUT DB2015
150 0012 COMPR A,S A004
=L S Y T TEQ,evennnn. fvia i ST 332009........
O 1Y S 010 = 3 5.0 S BUE R, XK iiiennees 57900000 :
165 001B TIXR T B850
N1 1. IR 001D e eemeemeemeeeeeeeeeeans LT, fzi7e o) SN 3B2FE9........
T v 1 TN 0020......... EXIT e 2SI LENGTH . viieeeeeeeeeeees 13100000 :
180 0024 RSUB 4F0000
..... 185 meeessn 0027 eesss s INBUT s BYTEe oo X E L eoooeesesses L

————————————————————
| llustration of Control Sections and

Program Linking (Fig 2.15 & 2.16) (Cont.)

..... i
193 0990 .
200 SUBROUTINE TO WRITE RECORD FROM BUFFER
205
20T e EXTREF LENGTH,BUFFER
- P — S S
L — e SEERR T —— 00000
...2.1.5......"....OIOIO.GIIIIIIHIV\TI;OOP --------- *If_lj ------------ :__ 1'0'5')' --------------------------- EBZUIZII"I
7 0009 ...oooooeeeeveereereneen JEQ W WLOOR 332FFA
225 . 000C oo tLDCH BUFFER,X 53900000;
222 000c LD UL I
235 0013 TIXR T B850
240 0015 JLT WLOOP 3B2FEE
245 0018 RSUB 4F0000
Vioes END FIRST

001B * =X'05’ 05

Figrre 2.16 Program from Fig. 2.15 with object code.

2.3.5 Control Sections ana Program

Linking (Cont.)

O Assembler directive: secname CSECT
= Signal the start of anew control section
= eg.109 RDREC CSECT
= eg. 193 WRREC CSECT

= START also identifies the beginning of a section

O External references
m References between control sections

= The assembler generates information for each external
reference that will allows the |oader to perform the
required linking.

108

e
External Definition and References

0 External definition
= Assembler directives: EXTDEF name [, name]

= EXTDEF names symbols, called external symbols, that
are defined in this control section and may be used by
other sections

m Control section names do not need to be named in an
EXTDEF statement (e.g., COPY, RDREC, and WRREC)

o They are automatically considered to be external symbols
O External reference
= Assembler directives: EXTREF name|[,name]

= EXTREF names symbolsthat are used in this control
section and are defined elsewhere

109

2.3.5 Control Sections and Program

Linking (Cont.)

0 Any Iinstruction whose operand involves an
external reference

Insert an address of zero and pass information to the
|oader

o Cause the proper address to be inserted at load time

Relative addressing is not possible

o Theaddress of external symbol have no predictable
relationship to anything in this control section

O Anextended format instruction must be used to provide
enough room for the actual address to be inserted

110

Example of External Definition and
References

0 Example
= 15 0003 CLOOP +JSUB RDREC 48100000
= 160 0017 +STCH BUFFER,X 57900000

= 190 0028 MAXLEN WORD BUFEND-BUFFER 000000

111

How the Assembler Handles Control
Sections?

O

The assembler must include information in the object
program that will cause the loader to insert proper values
wherethey arerequired

Define record: gives information about external symbols

named by EXTDEF

= Col.1 D

= Coal. 2-7 Name of external symbol defined in this section

= Coal. 813 Relative address within this control section (hex)

= Col.14-73 Repeat information in Col. 2-13 for other external
symbols

Refer record: lists symbols used as external references, i.e,,

symbols named by EXTREF

= Col.1 R

= Col. 2-7 Name of external symbol referred to in this section

= Col. 873 Name of other external reference symbols 112

How the Assembler Handles Control
Sections? (Cont.)

O

Modification record (revised)

Col. 1 M

Col. 2-7 Starting address of the field to be modified (hex)

Col. 8-9 Length of the field to be modified, in half-bytes (hex)

Col. 10 Modification flag (+ or -)

Col.11-16 External symbol whose value isto be added to or subtracted

from the indicated field.

Control section name is automatically an external symbol, it is available for
use in Modification records.

Example (Figure 2.17)

M000004,05,+RDREC
M000011,05,+WRREC
M000024,05,+WRREC
M000028,06,+BUFEND //Line 190 BUFEND-BUFFER
M000028,06,-BUFFER

113

ODpject Program Corresponding to Fig.
2.15 (Fig. 2.17)

ll

DBUFFER000033BUFENQPO103%+ENGTEPOOOZD
DREC WRREC

TOOUOOOIDl720274B1000000320232900003320074B1000003F2FE00320160F2016
;POOOI99991000%9FZOOQ§B100009@E2000

BT et v VA
%90000@@%¢RDREC
M00001105+WRREC

M00002405+WRREC

%900000

ODpject Program Corresponding to Fig.
2.15 (Fig. 2.17) (Cont.)

T0000001D3410B400344077201FE32013332FF5@B2015A00433200957900000B850
...... O 1 Y AR O S

%90001@@3¢BUFFER

quOOZ%p%vLENGTH

%90002%@@¢BUFEND

%@0002%@@;BUFFER

ODpject Program Corresponding to Fig.
2.15 (Fig. 2.17) (Cont.)

§ M00000305+LENGTH
E M00000D05+BUFFER

Figure 2.17 Object program corresponding to Fig. 2.15.

116

—————————————————————
2.4 Assembler Design Options

0 One-pass assemblers

O Multi-pass assemblers

2.4.1 One-Pass Assemblers

0 Goal: avoid a second pass over the source program

O Main problem
m Forward references to data items or label's on instructions

O Solution

= Dataitems: require all such areas be defined before they
are referenced
m Labd oninstructions: cannot be eiminated

o E.g.thelogic of the program often requires aforward jump
o Itistoo inconvenient if forward jumps are not permitted

118

Two Types of One-Pass Assemblers:

0 Load-and-go assembler

= Produces object code directly in memory for
Immediate execution

O The other assembler

= Produces usual kind of object code for later
execution

119

—!
| oad-and-Go Assembler

0 No object program iswritten out, no loader is
needed

O Useful for program development and testing
Avoids the overhead of writing the object program out
and reading it back in

0 Both one-pass and two-pass assemblers can be

designed as load-and-go
However, one-pass also avoids the overhead of an
additional pass over the source program

O For aload-and-go assembler, the actual address must
be known at assembly time.

120

—!

Forward Reference Handling in One-pass
Assembler

O When the assembler encounter an instruction
operand that has not yet been defined:

The assembler omits the translation of operand address

Insert the symbol into SYMTARB, if not yet exist, and
mark this symbol undefined

The address that refers to the undefined symbol is added
to alist of forward references associated with the symbol
table entry

When the definition for a symbol is encountered

1. Theforward reference list for that symbol is scanned

2. The proper address for the symbol is inserted into any
Instructions previous generated.

121

—!
Handling Forward Reference in One-pass

Assembler (Cont.)

0o At the end of the program
Any SYMTAB entriesthat are still marked with *
Indicate undefined symbols
o Beflagged by the assembler as errors
Search SYMTAB for the symbol named in the

END statement and jump to this location to begin
execution of the assembled program.

122

Sample Program for a One-Pass
Assembler (Fig. 2.18)

Line Loc Source statement Object code

o 1000 COPY START 1000

1 1000 EOF BYTE C"EOF’ 454F46
2 1003 THREE WORD 3 000003
3 1006 ZERO WORD 0 000000
4 1009 RETADR RESW 1

5 100C LENGTH RESW 1

6 100F BUFFER RESB 4096

2 .

10 200F FIRST STL RETADR 141009
1.5 2012 CLOOP JSUB RDREC 48203D
20 2015 LDA LENGTH 00100cC
25 2018 COMP ZERO 281006
30 201B JEQ ENDETL 302024
35 201E JSUB WRREC 482062
40 2021 J CLOOP 302012
45 2024 ENDFIL LDA EOF 0010060
50 2027 STA BUFFER O0C10OO0F
55 202A LDA THREE 001003
60 202D STA LENGTH 0Cl00cC
65 2030 JSUB WRREC 482062
70 2033 LI RETADR 081009
75 2036 RSUB 4C0000

Sample Program for a One-Pass

Assembl er

NEERY,

115

120 A

121 2039 INPUT
122 203A MAXT.EN
124 .

125 203D RDREC
130 2040

135 2043 RLOOP
140 2046

145 2049

150 204C

155 204F

160 2052

165 2055

170 2058

175 205B BEXIT
180 205E

195

SUBROUTINE TO READ RECORD INTO BUFFE

BYTE
WORD

LDX
LDA
TD
JEQ
RD
COMP
JEQ
STCH
TLX
JLT
STX
RSUB

(Fig. 2.18) (Cont.)

X'Fl’
4096

ZERO
ZERQO
INPUT
RLOOP
INPUT
ZERO
EXIT
BUFFER, X
MAXT.EN
RLOOP
LENGTH

Fl
001000

041006
001006
E02039
302043
DB2039
281006
30205B
54900F
2C203A
382043
10100C
4C0000

Sample Program for a One-Pass
Assembler (Fig. 2.18) (Cont.)

493 '

200 . SUBROUTINE TO WRITE RECORD FROM BUFFER
205 :

206 2061 OUTPUT BYTE X'057 05

207 :

210 2062 WRREC LDX ZERO 041006
Bl 2065 WLOOP D OUTPUT E02061
220 2068 JEQ WLOOP 302065
225 206B LDCH BUFFER, X 50900F
230 206E WD OUTPUT DC2061
235 2071 TIX LENGTH 2C100C
240 2074 JLT WLOOP 382065
245 2077 RSUB 4C0000
255 END FIRST

Figure 2.18 Sample program for a one-pass assembler.

Example

o Fg. 2.19 (a)

= Show the object code in memory and symbol
table entries after scanning line 40

= Line15: forward reference (RDREC)
o Object codeis marked ----

o Vauein symbol tableis marked as* (undefined)

0 Insert the address of operand (2013) in alist
assoclated with RDREC

= Line 30 and Line 35: follow the same procedure

126

.
Object Code in Memory and SYMTAB

After scanning line 40 (Fig.2.19(a))

Memory
address Co ts

Symbol Value

1000 454F4600 00032000 O0O0XXXXXX XXXXXXXX LENGTH |100C

1010 XXXXXXXX XXAXXXXX XXXXXXXX XXXXXXXX RDREC % » 2013 | 0
: THREE |1003

L]

2000 XXXXXXXX xxxxx{ ZERO 1006

2010 28100630 C———x8(- e s g7
2020 S

3 EOF 1000

ENDFIL ": I’o-—b 201C | 0
T

~RELADR—3065
A==

BUFFER |100F

CLOOP |2012

FIRST 200F

—————————————————————
Example (Cont.)

o Fig. 2.19 (b)

= Show the object code in memory and symbol table entries
after scanning line 160

m Line45: ENDFIL was defined

o Assembler placeitsvaueinthe SYMTAB entry

o Insert thisvalue into the address (at 201C) as directed by the
forward reference list

= Line 125: RDREC was defined

o Follow the same procedure

= Line65
o A new forward reference (WRREC and EXIT)

128

Object Code in Memory and SYMTAB

After'scanning line 160

2031

address Contents LENGTH | 100C
1000 454F4600 00030000 ~DOXXXXXX XXXXXXXX RDREC | 203D
1010 XXXXXXXX XXXX XXXXXXXX XXXXXXXX
° THREE 1003
L]
. ZERO 1006
2000 XXXXXX XXXXXXXX XXxxxxl4
2010 0100c 28100630 (202448 WRIED1 4 [rerin201F
2020 100F0010 OA0CloO0C EOF 1000
2030 4 10094C00 OOF1l0010 00841006
2040 QO-L06E0 20393020 43D82039 281 ENDFIL 2024
2050 e T9O~OF il
. —RE=TRON |

———————
BUFFER | 100F

CLOOP | 2012

MAXLEN | 203A

INPUT 2039

EXIT * | o=
RLOOP | 2043

¥

:

2050

One-Pass Assembler Producing Object
Code

O

Forward reference are entered into the symbol table’'slist as
before

= |f the operand contains an undefined symbol, use 0 as the address and
write the Text record to the object program.

However, when definition of a symbol is encountered,

= Assembler generate another Text record with the correct operand
address.

When the program is loaded, this address will be inserted into
the instruction by loader.

The object program records must be kept in their original
order when they are presented to the |oader

130

—!

Example

o InFig. 2.20

Second Text record contains the object code
generated from lines 10 through 40

o Theoperand addressed for the instruction on line 15,
30, 35 have been generated as 0000

When the definition of ENDFIL I1s encountered

o Generate the third Text record

Specify the value 2024 (the address of ENDFIL) isto be
loaded at location 201C (the operand field of JEQ in line 30)

Thus, the value 2024 will replace the 0000 previously |loaded

131

ODbject Program from one-pass
assembler for Fig 2.18 (Fig 2.20)

HCOPY 00100000107A 201C

A
390100009454F46000003900000 \

§902024190010099C100F0010030C100%&80009@81009400000F1001000

390201302203D

390206218041006E0206130206550900FD02061201000382065400000

QQOZOOF

Figure 2.20 Object program from one-pass assembler for program
in Fig. 2.18.

—!
2.4.2 Multi-Pass Assemblers

o Motivation: for a 2-pass assembler, any symbol
used on the right-hand side should be defined
previoudly.

No forward references since symbols value can't
ne defined during the first pass

Reason: symbol definition must be completed In
08SS 1.
o Eg APLHA EQU BETA . Notalowed!
BETA EQU DELTA
 DELTA RESW 1 '

133

—!

Multi-Pass Assemblers (Cont.)

0 Motivation for using a multi-pass assembler
DELTA can be defined in pass 1
BETA can be defined in pass 2
ALPHA can be defined in pass 3

0 Multi-pass assemblers
Eliminate the restriction on EQU and ORG

Make as many passes as are needed to process the
definitions of symbols.

134

|mplementation

0 A symbol tableis used

= Store symbol definitions that involve forward
references

= Indicate which symbols are dependant on the
values of others

= Keegpalinking list to keep track of whose
symbols value depend on an this entry

135

Example of Multi-pass Assembler
Operation (fig 2.21a)

Example of Multi-Pass Assembler
Operation (Fig 2.21b)

& 1: one symbol in the defining expression is undefined

"TMAXLEN EQU ~~BUFEND-BUFFER

PREVBT EQU BUFFER-1 *: undefined

A list of the symbols whose

BUFFER RESB 4096 values dependjon MAXLEN
BUFEND EQU *

(b)

Figure 2.21 Example of multi-pass assembler operation.

e
Example of Multi-Pass Assembler

Operation (Fig 2.21c)

'HALFSZ |&1| MAXLEN/2 e
MAXLEN —| HALFSZ |0
(c)
138

Example of Multi-pass Assembler

Operation (fig 2.21d)

HALFSZ EQU

BUFFER RESB
BUFEND EQU

MAXLEN/2
BUFEND-BUFFER

4096

*

BUFEND | * P MAXLEN
HALFSZ |&1| MAXLEN/2 0

MAXLEN |&2] BUFEND-BUFFER &+—Pp| HALFSZ
BUFFER | * . | MAXLEN

Figure 2.21 (contd)

(d)

139

= e T RN E v SAS s o

Operation (fig 2.21e)

BUFEND | * o—1+—Pp1 MAXLEN | 0

HALFSZ EQU MAXLEN/2
MAXLEN EQU BUFEND-BUFFER HALFSZ |&1| MAXLEN/2 0
PREVBT EQU BUFFER-1

| PREVBT ?
BUF.I-:ERRESB 4096. LN A —— [roryony p
BUFEND.E.Q.U S CETRLEPPET T LIV PEEPPEPT LT PEE
| BUFFER ?

Suppose Buffer =* = (PC):lo_C'%_Z

=

16

(e)

Example of Multi-pass Assembler
Operation (Fig 2.21f)

BUFEND=*(PC)=1034,.+4096, ,=1034, +1000, .=2034,

BUFEND 0
HALFSZ 0
HALFSZ EQU MAXLEN/2]
MAXLEN EQU BUFEND-BUFFER
PREVBT EQU BUFFER-1 PREVBT | 1033 0
MAXLEN 0|
J.BUFFER .RESB....4096. ...
BUFEND EQU * BUFFER | 1034 0

f
0 l<

Figure 2.21 (con)

