
1

Chapter 2
Assemblers

2

Outline
 2.1 Basic Assembler Functions
 2.2 Machine-Dependent Assembler Features
 2.3 Machine-Independent Assembler Features
 2.4 Assembler Design Options
 2.5 Implementation Examples

3

Introduction to Assemblers
 Fundamental functions
 Translate mnemonic operation codes to their

machine language equivalents
 Assign machine addresses to symbolic labels used

by the programmer

 The feature and design of an assembler depend
 Source language it translate
 The machine language it produce

4

2.1 Basic Assembler Functions
 Assembler
 A program that accepts an assembly

language program as input and produces
its machine language equivalent along with
information for the loader

5

2.1 Basic Assembler Functions (Cont.)
 Constructions of assembly language program
 Instruction

Label mnemonic operand
 Operand

 Direct addressing
 E.g. LDA ZERO

 Immediate addressing
 E.g. LDA #0

 Indexed addressing
 E.g. STCH BUFFER, X

 Indirect addressing
 E.g J @RETADR

6

2.1 Basic Assembler Functions (Cont.)
 Constructions of assembly language program (Cont.)

 Data
Label BYTE value
Label WORD value
Label RESB value
Label RESW value

 Label: name of operand
 value: integer, character
 E.g. EOF BYTE C’EOF’
 E.g. FIVE WORD 5

7

Assembler Directives
 Pseudo-instructions

 Not translated into machine instructions
 Provide instructions to the assembler itself

 Basic assembler directives
 START: specify name and starting address of the program
 END: specify end of program and (option) the first executable

instruction in the program
 If not specified, use the address of the first executable instruction

 BYTE: direct the assembler to generate constants
 WORD
 RESB: : instruct the assembler to reserve memory location without

generating data values
 RESW

8

Example of a SIC Assembler
Language Program
 Show the generated object code for each statement in

Fig. 2.1
 Loc column shows the machine address for each

part of the assembled program
 Assume program starts at address 1000
 All instructions, data, or reserved storage are sequential

arranged according to their order in source program.
 A location counter is used to keep track the address

changing

9

Example of a SIC Assembler
Language Program (Fig 2.1,2.2)

10

Example of a SIC Assembler
Language Program (Fig 2.1,2.2) (Cont.)

11

Example of a SIC Assembler
Language Program (Fig 2.1,2.2) (Cont.)

12

Functions of a Basic Assembler
 Convert mnemonic operation codes to their machine

language equivalents
 E.g. STL -> 14 (line 10)

 Convert symbolic operands to their equivalent
machine addresses
 E.g. RETADR -> 1033 (line 10)

 Build the machine instructions in the proper format
 Convert the data constants to internal machine

representations
 E.g. EOF -> 454F46 (line 80)

 Write the object program and the assembly listing

13

Functions of a Basic Assembler (Cont.)
 All of above functions can be accomplished by

sequential processing of the source program
 Except number 2 in processing symbolic operands

 Example
 10 STL RETADR

 RETADR is not yet defined when we encounter STL
instruction

 Called forward reference

14

Symbolic Operands (Renew)
 We’re not likely to write memory addresses

directly in our code.
 Instead, we will define variable names.

 Other examples of symbolic operands
 Labels (for jump instructions)
 Subroutines
 Constants

15

Address Translation Problem
 Forward reference
 A reference to a label that is defined later in the

program
 We will be unable to process this statement

 As a result, most assemblers make 2 passes
over the source program
 1st pass: scan label definitions and assign addresses
 2nd pass: actual translation (object code)

16

Functions of Two Pass Assembler
 Pass 1 - define symbols (assign addresses)

 Assign addresses to all statements in the program
 Save the values assigned to all labels for use in Pass 2
 Process some assembler directives

 Pass 2 - assemble instructions and generate object
program
 Assemble instructions
 Generate data values defined by BYTE, WORD, etc.
 Process the assembler directives not done in Pass 1
 Write the object program and the assembly listing

17

Object Program
 Finally, assembler must write the generated

object code to some output device
 Called object program

 Will be later loaded into memory for execution

18

Object Program (Cont.)
 Contains 3 types of records:

 Header record:
Col. 1 H
Col. 2-7 Program name
Col. 8-13 Starting address (hex)
Col. 14-19 Length of object program in bytes (hex)

 Text record
Col.1 T
Col.2-7 Starting address in this record (hex)
Col. 8-9 Length of object code in this record in bytes (hex)
Col. 10-69 Object code (hex) (2 columns per byte)

 End record
Col.1 E
Col.2~7 Address of first executable instruction (hex)

(END program_name)

19

Object Program for Fig 2.2 (Fig 2.3)

Address of first executable
instruction (hex)

Program name,Starting address (hex),Length
of object program in bytes (hex)

Starting address (hex),Length of object
code in this record (hex),Object code (hex)

20

2.1.2 Assembler Algorithm and Data
Structures
 Algorithm
 Two-pass assembler

 Data Structures
 Operation Code Table (OPTAB)
 Symbol Table (SYMTAB)
 Location Counter (LOCCTR)

21

Internal Data Structures
 OPTAB (operation code table)

 Content
 Menmonic machine code and its machine language equivalent
 May also include instruction format, length etc.

 Usage
 Pass 1: used to loop up and validate operation codes in the source

program
 Pass 2: used to translate the operation codes to machine language

 Characteristics
 Static table, predefined when the assembler is written

 Implementation
 Array or hash table with mnemonic operation code as the key (preferred)

 Ref. Appendix A

22

Internal Data Structures (Cont.)
 SYMTAB (symbol table)

 Content
 Label name and its value (address)
 May also include flag (type, length) etc.

 Usage
 Pass 1: labels are entered into SYMTAB with their address (from

LOCCTR) as they are encountered in the source program
 Pass 2: symbols used as operands are looked up in SYMTAB to

obtain the address to be inserted in the assembled instruction
 Characteristic

 Dynamic table (insert, delete, search)
 Implementation

 Hash table for efficiency of insertion and retrieval

23

Internal Data Structures (Cont.)
 Location Counter
 A variable used to help in assignment of

addresses
 Initialized to the beginning address specified in

the START statement
 Counted in bytes

24

Algorithm for 2 Pass Assembler (Fig
2.4)
 Figure 2.4 (a): algorithm for pass 1 of

assembler

 Figure 2.4 (b): algorithm for pass 2 of
assembler

25

Algorithm for 2 Pass Assembler (Fig
2.4)

 Both pass1 and pass 2 need to read the
source program.
 However, pass 2 needs more information

 Location counter value, error flags

 Intermediate file
 Contains each source statement with its assigned

address, error indicators, etc
 Used as the input to Pass 2

26

Intermediate File

Pass 1

assembler
Pass 2

assembler
Intermediate

file

OPTAB SYMTABLOCCTR

LABEL, OPCODE, OPERANDSource
Program

Object
Program

27

Algorithm for Pass 1 of Assembler
(Fig 2.4a)

28

29

Algorithm for Pass 2 of Assembler
(Fig 2.4b)

30

31

Assembler Design
 Machine Dependent Assembler Features

 instruction formats and addressing modes
 program relocation

 Machine Independent Assembler Features
 literals
 symbol-defining statements
 expressions
 program blocks
 control sections and program linking

 Assembler design Options
 one-pass assemblers
 multi-pass assemblers

32

2.2 Machine Dependent Assembler
Features
 Machine Dependent Assembler Features
 SIC/XE
 Instruction formats and addressing modes
 Program relocation

33

SIC/XE Assembler
 Previous, we know how to implement the 2-

pass SIC assembler.

 What’s new for SIC/XE?
 More addressing modes.
 Program Relocation.

34

SIC/XE Assembler (Cont.)
 SIC/XE

 Immediate addressing: op #c
 Indirect addressing: op @m
 PC-relative or Base-relative addressing: op m

 The assembler directive BASE is used with base-relative addressing
 If displacements are too large to fit into a 3-byte instruction, then 4-byte

extended format is used
 Extended format: +op m
 Indexed addressing: op m, x
 Register-to-register instructions
 Large memory

 Support multiprogramming and need program reallocation capability

35

Example of a SIC/XE Program (Fig
2.5)
 Improve the execution speed
 Register-to-register instructions

 Immediate addressing: op #c
 Operand is already present as part of the instruction

 Indirect addressing: op @m
 Often avoid the need of another instruction

36

Example of a SIC/XE Program (Fig
2.5,2.6)

37

Example of a SIC/XE Program (Fig
2.5,2.6) (Cont.)

38

Example of a SIC/XE Program (Fig
2.5,2.6) (Cont.)

39

2.2.1 Instruction Formats and
Addressing Modes
 START now specifies a beginning program

address of 0
 Indicate a relocatable program

 Register translation
 For example: COMPR A, S => A004
 Must keep the register name (A, X, L, B, S, T, F,

PC, SW) and their values (0,1, 2, 3, 4, 5, 6, 8, 9)
 Keep in SYMTAB

40

Address Translation
 Most register-to-memory instructions are assembled

using PC relative or base relative addressing
 Assembler must calculate a displacement as part of the

object instruction
 If displacement can be fit into 12-bit field, format 3 is used.
 Format 3: 12-bit address field

 Base-relative: 0~4095
 PC-relative: -2048~2047

 Assembler attempts to translate using PC-relative first, then
base-relative
 If displacement in PC-relative is out of range, then try base-relative

41

Address Translation (Cont.)
 If displacement can not be fit into 12-bit field in

the object instruction, format 4 must be used.
 Format 4: 20-bit address field
 No displacement need to be calculated.

 20-bit is large enough to contain the full memory address

 Programmer must specify extended format: +op m
 For example: +JSUB RDREC => 4B101036

 LOC(RDREC) = 1036, get it from SYMTAB

42

PC-Relative Addressing Modes
 10 0000 FIRST STL RETADR 17202D

 Displacement= RETADR –(PC) = 30-3 = 2D
 Opcode (6 bits) =1416=000101002

 nixbpe=110010
 n=1, i = 1: indicate neither indirect nor immediate addressing
 p = 1: indicate PC-relative addressing

OPCODE e Addressn i x b p

0001 01 0 (02D)161 1 0 0 1

Object Code = 17202D

43

PC-Relative Addressing Modes (Cont.)
 40 0017 J CLOOP 3F2FEC

 Displacement= CLOOP - (PC) = 6 - 1A = -14 = FEC (2’s
complement for negative number)

 Opcode=3C16 = 001111002

 nixbpe=110010

OPCODE e Addressn i x b p

0011 11 0 (FEC)161 1 0 0 1

Object Code = 3F2FEC

44

Base-Relative Addressing Modes
 Base register is under the control of the

programmer
 Programmer use assembler directive BASE to specify which

value to be assigned to base register (B)

 Assembler directive NOBASE: inform the assembler that the
contents of base register no longer be used for addressing

 BASE and NOBASE produce no executable code

45

Base-Relative Addressing Modes
(Cont.)
 12 LDB #LENGTH
 13 BASE LENGTH ;no object code
 160 104E STCH BUFFER, X 57C003

 Displacement= BUFFER –(B) = 0036 –0033(=LOC(LENGTH)) = 3
 Opcode=54=01010100
 nixbpe=111100

 n=1, i = 1: indicate neither indirect nor immediate addressing
 x = 1: indexed addressing
 b = 1: base-relative addressing

OPCODE e Addressn i x b p

0101 01 0 (003)161 1 1 1 0

Object Code = 57C003

46

Address Translation
 Assembler attempts to translate using PC-relative

first, then base-relative
 e.g. 175 1056 STX LENGTH 134000

 Try PC-relative first
 Displacement= LENGTH - (PC) = 0033 - 1056 = -1026 (hex)

 Try base-relative next
 displacement= LENGTH –(B) = 0033 –0033 =0
 Opcode=10
 nixbpe=110100

 n=1, i = 1: indicate neither indirect nor immediate addressing
 b = 1: base-relative addressing

47

Immediate Address Translation
 Convert the immediate operand to its internal

representation and insert it into the instruction
 55 0020 LDA #3 010003

 Opcode=00
 nixbpe=010000

 i = 1: immediate addressing

OPCODE e Addressn i x b p

0000 00 0 (003)160 1 0 0 0

Object Code = 010003

48

Immediate Address Translation (Cont.)
 133 103C +LDT #4096 75101000

 Opcode=74=01110100
 nixbpe=010001

 i = 1: immediate addressing
 e = 1: extended instruction format since 4096 is too large to fit

into the 12-bit displacement field

OPCODE e Addressn i x b p

0111 01 1 (01000)160 1 0 0 0

Object Code = 75101000

49

Immediate Address Translation (Cont.)
 12 0003 LDB #LENGTH 69202D

 The immediate operand is the symbol LENGTH
 The address of LENGTH is loaded into register B

 Displacement=LENGTH –(PC) = 0033 –0006 = 02D
 Opcode=6816 = 011010002

 nixbpe=010010
 Combined PC relative (p=1) with immediate addressing (i=1)

OPCODE e Addressn i x b p

0110 10 0 (02D)160 1 0 0 1

50

Indirect Address Translation
 Indirect addressing
 The contents stored at the location represent the

address of the operand, not the operand itself
 Target addressing is computed as usual (PC-

relative or BASE-relative)

 n bit is set to 1

51

Indirect Address Translation (Cont.)
 70 002A J @RETADR 3E2003

 Displacement= RETADR- (PC) = 0030 –002D =3
 Opcode= 3C=00111100
 nixbpe=100010

 n = 1: indirect addressing
 p = 1: PC-relative addressing

OPCODE e Addressn i x b p

0011 11 0 (003)161 0 0 0 1

52

Note
 Ref: Appendix A

53

2.2.2 Program Relocation
 The larger main memory of SIC/XE

 Several programs can be loaded and run at the same time.
 This kind of sharing of the machine between programs is

called multiprogramming

 To take full advantage
 Load programs into memory wherever there is room
 Not specifying a fixed address at assembly time
 Called program relocation

54

2.2.2 Program Relocation (Cont.)
 Absolute program (or absolute assembly)

 Program must be loaded at the address specified at assembly time.
 E.g. Fig. 2.1

 e.g. 55 101B LDA THREE 00102D

 What if the program is loaded to 2000
e.g. 55 101B LDA THREE 00202D
 Each absolute address should be modified

COPY START 1000
FIRST STL RETADR

:
:

program loading
starting address 1000

55

Example of Program Relocation (Fig
2.7)

56

2.2.2 Program Relocation (Cont.)
 Relocatable program

 An object program that contains the information necessary to perform
address modification for relocation

 The assembler must identify for the loader those parts of object
program that need modification.

 No instruction modification is needed for
 Immediate addressing (not a memory address)
 PC-relative, Base-relative addressing

 The only parts of the program that require modification at load time
are those that specify direct addresses
 In SIC/XE, only found in extended format instructions

COPY START 0
FIRST STL RETADR

:
:

program loading
starting address is
determined at load
time

57

Instruction Format vs. Relocatable
Loader
 In SIC/XE

 Format 1, 2, 3
 Not affect

 Format 4
 Should be modified

 In SIC
 Format with address field

 Should be modified
 SIC does not support PC-relative and base-relative addressing

58

Relocatable Program

 Modification record
 Col 1 M
 Col 2-7 Starting location of the address field to be

modified, relative to the beginning of the program (hex)
 Col 8-9 length of the address field to be modified, in half-bytes
 E.g M^000007^05

Pass the address–modification information to the relocatable loader

Beginning address of the program is to be added to a field that begins
at addr ox000007 and is 2.5 bytes in length.

 We use modification records that are added to the
object files.

59

Object Program for Fig 2.6 (Fig 2.8)

60

2.3 Machine-Independent Assembler
Features
 Literals
 Symbol-Defining Statements
 Expressions
 Program Blocks
 Control Sections and Program Linking

61

2.3.1 Literals
 Design idea

 Let programmers to be able to write the value of a
constant operand as a part of the instruction that uses it.

 This avoids having to define the constant elsewhere in the
program and make up a label for it.

 Such an operand is called a literal because the value is
stated “literally”in the instruction.

 A literal is identified with the prefix =
 Examples

 45 001A ENDFILLDA =C’EOF’ 032010
 215 1062 WLOOPTD =X’05’ E32011

62

Original Program (Fig. 2.6)

63

Using Literal (Fig. 2.9)

64

Object Program Using Literal

The same as before

65

Original Program (Fig. 2.6)

66

Using Literal (Fig. 2.9)

67

Object Program Using Literal

The same as before

68

Object Program Using Literal (Fig 2.9
& 2.10)

69

Object Program Using Literal (Fig 2.9
& 2.10) (Cont.)

70

Object Program Using Literal (Fig 2.9
& 2.10) (Cont.)

71

Literals vs. Immediate Operands
 Immediate Operands

 The operand value is assembled as part of the machine instruction
 e.g. 55 0020 LDA #3 010003

 Literals
 The assembler generates the specified value as a constant at some

other memory location
 The effect of using a literal is exactly the same as if the programmer

had defined the constant and used the label assigned to the constant as
the instruction operand.

 e.g. 45 001A ENDFIL LDA =C’EOF’ 032010 (Fig. 2.9)

 Compare (Fig. 2.6)
 e.g. 45 001A ENDFIL LDA EOF 032010

80 002D EOF BYTE C’EOF’454F46

Similar to define
constant

72

Literal - Implementation
 Literal pools
 All of the literal operands are gathered together

into one or more literal pools
 Normally, literal are placed at the end of the

object program, i.e., following the END statement
by the assembler

 E.g., Fig. 2.10 (END statement)
255 END FIRST

1076 * =X’05’ 05

73

Literal –Implementation (Cont.)
 In some case, programmer would like to place literals into a

pool at some other location in the object program
 Using assembler directive LTORG (see Fig. 2.10)
 Create a literal pool that contains all of the literal operands used

since the previous LTORG
 e.g., 45 001A ENDFIL LDA =C’EOF’ 032010 (Fig.2.10)

93 LTORG
002D * =C’EOF’ 454F46

 Reason: keep the literal operand close to the instruction referencing
it
 Allow PC-relative addressing possible

74

Literal - Implementation (Cont.)
 Duplicate literals

 e.g. 215 1062 WLOOP TD =X’05’
 e.g. 230 106B WD =X’05’

 The assemblers should recognize duplicate literals and
store only one copy of the specified data value
 Compare the character strings defining them

 E.g., =X’05’
 Easier to implement, but has potential problem (see next)

 Or compare the generated data value
 E.g.the literals =C’EOF’and =X’454F46’would specify identical

operand value.
 Better, but will increase the complexity of the assembler

Same
symbols,
only one
address is
assigned

75

Basic Data Structure for Assembler to
Handle Literal Operands
 Data Structure: literal table - LITTAB
 Content

 Literal name
 The operand value and length
 Address assigned to the operand

 Implementation
 Organized as a hash table, using literal name or value

as key.

76

How the Assembler Handles Literals?
 Pass 1

 Build LITTAB with literal name, operand value and length, (leaving
the address unassigned).

 Handle duplicate literals. (Ignore duplicate literals)
 When encounter LTORG statement or end of the program, assign an

address to each literal not yet assigned an address
 Remember to update the PC value to assign each literal’s address

 Pass 2
 Search LITTAB for each literal operand encountered
 Generate data values in the object program exactly as if they are

generated by BYTE or WORD statements
 Generate modification record for literals that represent an address in

the program (e.g. a location counter value)

77

2.3.2 Symbol-Defining Statements
 Labels on instructions or data areas

 The value of such a label is the address assigned to the
statement on which it appears

 Defining symbols
 All programmer to define symbols and specify their values
 Format: symbol EQU value

 Value can be constant or expression involving constants and
previously defined symbols

 Example
 MAXLEN EQU 4096
 +LDT #MAXLEN

78

2.3.2 Symbol-Defining Statements
(Cont.)
 Usage:
 Make the source program easier to understand

 How assembler handles it?
 In pass 1: when the assembler encounters the

EQU statement, it enters the symbol into
SYMTAB for later reference.

 In pass 2: assemble the instruction with the value
of the symbol
 Follow the previous approach

79

Examples of Symbol-Defining
Statements
 E.g. +LDT #4096 (Fig 2.5)

 MAXLEN EQU 4096
 +LDT #MAXLEN

 E.g. define mnemonic names for registers
 A EQU 0
 X EQU 1
 L EQU 2
 …

 E.g. define names that reflect the logical function of the
registers in the program
 BASE EQU R1
 COUNT EQU R2
 INDEX EQU R3

80

Forward Reference
 All symbol-defining directives do not allow

forward reference for 2-pass assembler
 e.g., EQU…
 All symbols used on the right-hand side of the

statement must have been defined previously
E.g. (Cannot be assembled in 2-pass assm.)

ALPHA EQU BETA
BETA EQU DELTA
DELTA RESW 1

81

2.3.3 Expressions
 Most assemblers allow the use of expression to

replace symbol in the operand field.
 Expression is evaluated by the assembler
 Formed according to the rules using the operators

+, -, *, /
 Division is usually defined to produce an integer result
 Individual terms can be

 Constants
 User-defined symbols
 Special terms: e.g., * (= current value of location counter)

82

2.3.3 Expressions (Cont.)
 Review
 Values in the object program are

 relative to the beginning of the program or
 absolute (independent of program location)

 For example
 Constants: absolute
 Labels: relative

83

2.3.3 Expressions (Cont.)
 Expressions can also be classified as absolute

expressions or relative expressions
 E.g. (Fig 2.9)

107 MAXLEN EQU BUFEND-BUFFER
 Both BUFEND and BUFFER are relative terms, representing

addresses within the program
 However the expression BUFEND-BUFFER represents an

absolute value: the difference between the two addresses

 When relative terms are paired with opposite signs
 The dependency on the program starting address is canceled out
 The result is an absolute value

84

2.3.3 Expressions (Cont.)
 Absolute expressions

 An expression that contains only absolute terms
 An expression that contain relative terms but in pairs and

the terms in each such pair have opposite signs
 Relative expressions

 All of the relative terms except one can be paired and the
remaining unpaired relative terms must have a positive
sign

 No relative terms can enter into a multiplication or
division operation no matter in absolute or relative
expression

85

2.3.3 Expressions (Cont.)
 Errors: (represent neither absolute values nor

locations within the program)
 BUFEND+BUFFER // not opposite terms

 100-BUFFER // not in pair

 3*BUFFER // multiplication

86

2.3.3 Expressions (Cont.)
 Assemblers should determine the type of an

expression
 Keep track of the types of all symbols defined in

the program in the symbol table.
 Generate Modification records in the object

program for relative values.

Symbol Type Value
RETADR R 30
BUFFER R 36
BUFEND R 1036
MAXLEN A 1000

SYMTAB for Fig. 2.10

87

2.3.4 Program Blocks
 Previously, main program, subroutines, and data area are

treated as a unit and are assembled at the same time.
 Although the source program logically contains subroutines, data area,

etc, they were assembled into a single block of object code
 To improve memory utilization, main program, subroutines, and data

blocks may be allocated in separate areas.

 Two approaches to provide such a flexibility:
 Program blocks

 Segments of code that are rearranged within a single object program unit
 Control sections

 Segments of code that are translated into independent object program
units

88

2.3.4 Program Blocks
 Solution 1: Program blocks

 Refer to segments of code that are rearranged within a
single object program unit

 Assembler directive: USE blockname
 Indicates which portions of the source program belong to which

blocks.

 Codes or data with same block name will allocate together
 At the beginning, statements are assumed to be part of the

unnamed (default) block
 If no USE statements are included, the entire program

belongs to this single block.

89

2.3.4 Program Blocks (Cont.)
 E.g: Figure 2.11

 Three blocks
 First: unnamed, i.e., default block

 Line 5~ Line 70 + Line 123 ~ Line 180 + Line 208 ~ Line 245
 Second: CDATA

 Line 92 ~ Line 100 + Line 183 ~ Line 185 + Line 252 ~ Line 255
 Third: CBLKS

 Line 103 ~ Line 107

 Each program block may actually contain several
separate segments of the source program.

 The assembler will (logically) rearrange these segments to
gather together the pieces of each block.

90

Program with Multiple Program
Blocks (Fig 2.11 & 2.12)

91

Program with Multiple Program
Blocks (Fig 2.11 & 2.12) (Cont.)

92

Program with Multiple Program
Blocks (Fig 2.11 & 2.12)

93

Basic Data Structure for Assembler to
Handle Program Blocks
 Block name table
 Block name, block number, address, length

Block name Block number Address Length
(default) 0 0000 0066
CDATA 1 0066 000B
CBLKS 2 0071 1000

94

How the Assembler Handles Program
Blocks?
 Pass 1

 Maintaining separate location counter for each program
block

 Each label is assigned an address that is relative to the
start of the block that contains it

 When labels are entered into SYMTAB, the block name
or number is stored along with the assigned relative
addresses.

 At the end of Pass 1, the latest value of the location
counter for each block indicates the length of that block

 The assembler can then assign to each block a starting
address in the object program

95

How the Assembler Handles Program
Blocks? (Cont.)
 Pass 2
 The address of each symbol can be computed by

adding the assigned block starting address and
the relative address of the symbol to the start of
its block
 The assembler needs the address for each symbol

relative to the start of the object program, not the start
of an individual program block

96

Table for Program Blocks
 At the end of Pass 1 in Fig 2.11:

97

Example of Address Calculation
 Each source line is given a relative address assigned and a

block number
 Loc/Block Column in Fig. 2.11

 For an absolute symbol (whose value is not relative to the start
of any program block), there is no block number
 E.g. 107 1000 MAXLEN EQU BUFEND-BUFFER

 Example: calculation of address in Pass 2
 20 0006 0 LDA LENGTH 032060

LENGTH = (block 1 starting address)+0003 = 0066+0003= 0069
LOCCTR = (block 0 starting address)+0009 = 0009
PC-relative: Displacement = 0069 - (LOCCTR) = 0069-0009=0060

98

2.3.4 Program Blocks (Cont.)
 Program blocks reduce addressing problem:

 No needs for extended format instructions (lines 15, 35, 65)
 The larger buffer is moved to the end of the object program

 No needs for base relative addressing (line 13, 14)
 The larger buffer is moved to the end of the object program

 LTORG is used to make sure the literals are placed ahead
of any large data areas (line 253)
 Prevent literal definition from its usage too far

99

2.3.4 Program Blocks (Cont.)
 Object code

 It is not necessary to physically rearrange the generated
code in the object program to place the pieces of each
program block together.

 Loader will load the object code from each record at the
indicated addresses.

 For example (Fig. 2.13)
 The first two Text records are generated from line 5~70
 When the USE statement is recognized

 Assembler writes out the current Text record, even if there still
room left in it

 Begin a new Text record for the new program block

100

Object Program Corresponding to Fig.
2.11 (Fig. 2.13)

101

Program blocks for the Assembly and
Loading Processes (Fig. 2.14)

same
order

Rearrangement
through loading

102

2.3.5 Control Sections and Program
Linking
 Control sections
 A part of the program that maintains its identity

after reassembly
 Each control section can be loaded and relocated

independently
 Programmer can assemble, load, and manipulate each

of these control sections separately

 Often used for subroutines or other logical
subdivisions of a program

103

2.3.5 Control Sections and Program
Linking (Cont.)
 Instruction in one control section may need to refer

to instructions or data located in another section
 Called external reference

 However, assembler have no idea where any other
control sections will be located at execution time

 The assembler has to generate information for such
kind of references, called external references, that
will allow the loader to perform the required linking.

104

Program Blocks v.s. Control Sections
 Program blocks
 Refer to segments of code that are rearranged

with a single object program unit

 Control sections
 Refer to segments that are translated into

independent object program units

105

Illustration of Control Sections and
Program Linking (Fig 2.15 & 2.16)

Implicitly defined as an external symbol

Define external symbols

External
reference

First control section: COPY

106

Illustration of Control Sections and
Program Linking (Fig 2.15 & 2.16) (Cont.)

Second control section: RDREC

External
reference

107

Illustration of Control Sections and
Program Linking (Fig 2.15 & 2.16) (Cont.)

108

2.3.5 Control Sections and Program
Linking (Cont.)
 Assembler directive: secname CSECT

 Signal the start of a new control section
 e.g. 109 RDREC CSECT
 e.g. 193 WRREC CSECT
 START also identifies the beginning of a section

 External references
 References between control sections
 The assembler generates information for each external

reference that will allows the loader to perform the
required linking.

109

External Definition and References
 External definition

 Assembler directives: EXTDEF name [, name]
 EXTDEF names symbols, called external symbols, that

are defined in this control section and may be used by
other sections

 Control section names do not need to be named in an
EXTDEF statement (e.g., COPY, RDREC, and WRREC)
 They are automatically considered to be external symbols

 External reference
 Assembler directives: EXTREF name [,name]
 EXTREF names symbols that are used in this control

section and are defined elsewhere

110

2.3.5 Control Sections and Program
Linking (Cont.)
 Any instruction whose operand involves an

external reference
 Insert an address of zero and pass information to the

loader
 Cause the proper address to be inserted at load time

 Relative addressing is not possible
 The address of external symbol have no predictable

relationship to anything in this control section
 An extended format instruction must be used to provide

enough room for the actual address to be inserted

111

Example of External Definition and
References
 Example

 15 0003 CLOOP +JSUB RDREC 4B100000

 160 0017 +STCH BUFFER,X 57900000

 190 0028 MAXLEN WORD BUFEND-BUFFER 000000

112

How the Assembler Handles Control
Sections?
 The assembler must include information in the object

program that will cause the loader to insert proper values
where they are required

 Define record: gives information about external symbols
named by EXTDEF
 Col. 1 D
 Col. 2-7 Name of external symbol defined in this section
 Col. 8-13 Relative address within this control section (hex)
 Col.14-73 Repeat information in Col. 2-13 for other external

symbols
 Refer record: lists symbols used as external references, i.e.,

symbols named by EXTREF
 Col. 1 R
 Col. 2-7 Name of external symbol referred to in this section
 Col. 8-73 Name of other external reference symbols

113

How the Assembler Handles Control
Sections? (Cont.)
 Modification record (revised)

 Col. 1 M
 Col. 2-7 Starting address of the field to be modified (hex)
 Col. 8-9 Length of the field to be modified, in half-bytes (hex)
 Col. 10 Modification flag (+ or -)
 Col.11-16 External symbol whose value is to be added to or subtracted

from the indicated field.
 Control section name is automatically an external symbol, it is available for

use in Modification records.
 Example (Figure 2.17)

 M000004^05^+RDREC
 M000011^05^+WRREC
 M000024^05^+WRREC
 M000028^06^+BUFEND //Line 190 BUFEND-BUFFER
 M000028^06^-BUFFER

114

Object Program Corresponding to Fig.
2.15 (Fig. 2.17)

115

Object Program Corresponding to Fig.
2.15 (Fig. 2.17) (Cont.)

116

Object Program Corresponding to Fig.
2.15 (Fig. 2.17) (Cont.)

117

2.4 Assembler Design Options
 One-pass assemblers

 Multi-pass assemblers

118

2.4.1 One-Pass Assemblers
 Goal: avoid a second pass over the source program
 Main problem

 Forward references to data items or labels on instructions

 Solution
 Data items: require all such areas be defined before they

are referenced
 Label on instructions: cannot be eliminated

 E.g. the logic of the program often requires a forward jump
 It is too inconvenient if forward jumps are not permitted

119

Two Types of One-Pass Assemblers:
 Load-and-go assembler
 Produces object code directly in memory for

immediate execution

 The other assembler
 Produces usual kind of object code for later

execution

120

Load-and-Go Assembler
 No object program is written out, no loader is

needed
 Useful for program development and testing

 Avoids the overhead of writing the object program out
and reading it back in

 Both one-pass and two-pass assemblers can be
designed as load-and-go
 However, one-pass also avoids the overhead of an

additional pass over the source program
 For a load-and-go assembler, the actual address must

be known at assembly time.

121

Forward Reference Handling in One-pass
Assembler
 When the assembler encounter an instruction

operand that has not yet been defined:
1. The assembler omits the translation of operand address
2. Insert the symbol into SYMTAB, if not yet exist, and

mark this symbol undefined
3. The address that refers to the undefined symbol is added

to a list of forward references associated with the symbol
table entry

4. When the definition for a symbol is encountered
1. The forward reference list for that symbol is scanned
2. The proper address for the symbol is inserted into any

instructions previous generated.

122

Handling Forward Reference in One-pass
Assembler (Cont.)

 At the end of the program
 Any SYMTAB entries that are still marked with *

indicate undefined symbols
 Be flagged by the assembler as errors

 Search SYMTAB for the symbol named in the
END statement and jump to this location to begin
execution of the assembled program.

123

Sample Program for a One-Pass
Assembler (Fig. 2.18)

124

Sample Program for a One-Pass
Assembler (Fig. 2.18) (Cont.)

125

Sample Program for a One-Pass
Assembler (Fig. 2.18) (Cont.)

126

Example
 Fig. 2.19 (a)
 Show the object code in memory and symbol

table entries after scanning line 40
 Line 15: forward reference (RDREC)

 Object code is marked ----
 Value in symbol table is marked as * (undefined)
 Insert the address of operand (2013) in a list

associated with RDREC

 Line 30 and Line 35: follow the same procedure

127

After scanning line 40 (Fig.2.19(a))

Object Code in Memory and SYMTAB

128

Example (Cont.)
 Fig. 2.19 (b)

 Show the object code in memory and symbol table entries
after scanning line 160

 Line 45: ENDFIL was defined
 Assembler place its value in the SYMTAB entry
 Insert this value into the address (at 201C) as directed by the

forward reference list

 Line 125: RDREC was defined
 Follow the same procedure

 Line 65
 A new forward reference (WRREC and EXIT)

129

Object Code in Memory and SYMTAB
After scanning line 160

130

One-Pass Assembler Producing Object
Code
 Forward reference are entered into the symbol table’s list as

before
 If the operand contains an undefined symbol, use 0 as the address and

write the Text record to the object program.

 However, when definition of a symbol is encountered,
 Assembler generate another Text record with the correct operand

address.

 When the program is loaded, this address will be inserted into
the instruction by loader.

 The object program records must be kept in their original
order when they are presented to the loader

131

Example
 In Fig. 2.20
 Second Text record contains the object code

generated from lines 10 through 40
 The operand addressed for the instruction on line 15,

30, 35 have been generated as 0000
 When the definition of ENDFIL is encountered

 Generate the third Text record
 Specify the value 2024 (the address of ENDFIL) is to be

loaded at location 201C (the operand field of JEQ in line 30)
 Thus, the value 2024 will replace the 0000 previously loaded

132

Object Program from one-pass
assembler for Fig 2.18 (Fig 2.20)

201C

133

2.4.2 Multi-Pass Assemblers
 Motivation: for a 2-pass assembler, any symbol

used on the right-hand side should be defined
previously.
 No forward references since symbols’value can’t

be defined during the first pass
 Reason: symbol definition must be completed in

pass 1.
 E.g. APLHA EQU BETA

BETA EQU DELTA
DELTA RESW 1

Not allowed !

134

Multi-Pass Assemblers (Cont.)
 Motivation for using a multi-pass assembler
 DELTA can be defined in pass 1
 BETA can be defined in pass 2
 ALPHA can be defined in pass 3

 Multi-pass assemblers
 Eliminate the restriction on EQU and ORG
 Make as many passes as are needed to process the

definitions of symbols.

135

Implementation
 A symbol table is used
 Store symbol definitions that involve forward

references
 Indicate which symbols are dependant on the

values of others
 Keep a linking list to keep track of whose

symbols’value depend on an this entry

136

Example of Multi-pass Assembler
Operation (fig 2.21a)

HALFSZ EQU MAXLEN/2
MAXLEN EQU BUFEND-BUFFER
PREVBT EQU BUFFER-1

.

.

.
BUFFER RESB 4096
BUFEND EQU *

137

Example of Multi-Pass Assembler
Operation (Fig 2.21b)

HALFSZ EQU MAXLEN/2
MAXLEN EQU BUFEND-BUFFER
PREVBT EQU BUFFER-1

.

.

.
BUFFER RESB 4096
BUFEND EQU *

&1: one symbol in the defining expression is undefined

A list of the symbols whose
values depend on MAXLEN

*: undefined

138

Example of Multi-Pass Assembler
Operation (Fig 2.21c)

HALFSZ EQU MAXLEN/2
MAXLEN EQU BUFEND-BUFFER
PREVBT EQU BUFFER-1

.

.

.
BUFFER RESB 4096
BUFEND EQU *

139

Example of Multi-pass Assembler
Operation (fig 2.21d)

HALFSZ EQU MAXLEN/2
MAXLEN EQU BUFEND-BUFFER
PREVBT EQU BUFFER-1

.

.

.
BUFFER RESB 4096
BUFEND EQU *

140

Example of Multi-pass Assembler
Operation (fig 2.21e)

HALFSZ EQU MAXLEN/2
MAXLEN EQU BUFEND-BUFFER
PREVBT EQU BUFFER-1

.

.

.
BUFFER RESB 4096
BUFEND EQU *

Suppose Buffer =* = (PC)=103416

141

Example of Multi-pass Assembler
Operation (Fig 2.21f)

HALFSZ EQU MAXLEN/2
MAXLEN EQU BUFEND-BUFFER
PREVBT EQU BUFFER-1

.

.

.
BUFFER RESB 4096
BUFEND EQU *

BUFEND=*(PC)=103416+409610=103416+100016=203416

