
ARM Exceptions
Hsung-Pin Chang
Department of Computer Science
National Chung Hsing University

Outline
o ARM Exceptions
o Entering and Leaving an Exception
o Installing an Exception Handler
o SWI Handlers
o Interrupt Handlers
o Reset Handlers
o Undefined Instruction Handlers
o Prefetch Abort Handler
o Data Abort Handler

ARM Exceptions
o ARM Exception Types

o ARM Exception Vector Table

o ARM Exception Priorities

o Use of Modes and Registers by Exceptions

ARM Exception Types
o Reset
o Undefined instruction
o Software Interrupt (SWI)
o Prefetch Abort
o Data Abort
o IRQ
o FIQ

ARM Exceptions Types (Cont.)
o Reset

n Occurs when the processor reset pin is asserted
o For signaling Power-up
o For resetting as if the processor has just powered up

n Software reset
o Can be done by branching to the reset vector (0x0000)

o Undefined instruction
n Occurs when the processor or coprocessors cannot

recognize the currently execution instruction

ARM Exceptions Types (Cont.)
o Software Interrupt (SWI)

n User-defined interrupt instruction
n Allow a program running in User mode to request

privileged operations that are in Supervisor mode
o For example, RTOS functions

o Prefetch Abort
n Fetch an instruction from an illegal address, the

instruction is flagged as invalid
n However, instructions already in the pipeline continue to

execute until the invalid instruction is reached and then a
Prefetch Abort is generated.

ARM Exceptions Types (Cont.)
o Data Abort

n A data transfer instruction attempts to load or store data at
an illegal address

o IRQ
n The processor external interrupt request pin is asserted

(LOW) and the I bit in the CPSR is clear (enable)
o FIQ

n The processor external fast interrupt request pin is
asserted (LOW) and the F bit in the CPSR is clear (enable)

Vector Table
o At the bottom of the memory map

o Each entry has only 32 bit
n Not enough to contain the full code for a handler
n Thus, usually is a branch instruction or load pc

instruction to the actual handler

o Example: armc_startup.s

ARM Exception

ARM Exception Vector Table

Reset
Undefined Instruction

Software Interrupt
Prefetch Abort

Data Abort
Reserved

IRQ
FIQ

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C

Exception
Vector Table

….
IRQ handler
…

SWI handler

(1)
(2)

ARM Exception Events

ARM Exception Priorities

Use of Modes and Registers by
Exceptions
o An exception changes the processor mode
o Thus, each exception handler has access to a

certain subset of banked registers
n Its own r13 or Stack Pointer (r13_mode or

sp_mode)
n Its own r14 or Link Register (r14_mode or

lr_mode)
n Its own Saved Program Status Register (SPSR_

mode).

Register Organization in ARM States

Entering and Leaving an Exception
o The Process Response to an Exception

o Returning from an Exception Handler

o The Return Address and Return Instruction

The Process Response to an Exception
o Copies the CPSR into the SPSR for the mode in which the

exception is to be handled.
n Saves the current mode, interrupt mask, and condition flags.

o Changes the appropriate CPSR mode bits
n Change to the appropriate mode

o Map in the appropriate banked registers for that mode
o Disable interrupts

n IRQs are disabled when any exception occurs.
n FIQs are disabled when a FIQ occurs, and on reset

o Set lr_mode to the return address
n Discuss in the next few slides

o Set the program counter to the vector address for the
exception

The Process Response to an Exception
(Cont.)
o For example, when reset, ARM
n Overwrites R14_svc and SPSR_svc by copying

the current values of the PC and CPSR into them
n Forces M[4:0] to 10011 (Supervisor mode), sets

the I and F bits in the CPSR, and clears the
CPSR's T bit

n Forces the PC to fetch the next instruction from
address 0x00.

n Execution resumes in ARM state.

The Process Response to an Exception
(Cont.)

R14_und = PC+4
SPSR_und = CPSR
CPSR[4:0] = 0b11011 //Undefined Mode
CPSR[5] = 0 // ARM state
CPSR[6] unchanged
CPSR[7] = 1 // Disable IRQ
PC = 0x0000004

Undefined Instructions

R14_svc = unexpected
SPSR_svc = unexpected
CPSR[4:0] = 0b10011 //Supervisor Mode
CPSR[5] = 0 // ARM state
CPSR[6] = 1 // Disable FIQ
CPSR[7] = 1 // Disable IRQ
PC = 0x00000000

Reset

The Process Response to an Exception
(Cont.)

R14_abt = PC+4
SPSR_abt = CPSR
CPSR[4:0] = 0b10111 //Abort Mode
CPSR[5] = 0
CPSR[6] unchanged
CPSR[7] = 1 // Disable IRQ
PC = 0x000000C

Prefetch Abort

R14_svc = PC + 4
SPSR_svc = CPSR
CPSR[4:0] = 0b10011 //Supervisor Mode
CPSR[5] = 0 // ARM state
CPSR[6] unchanged
CPSR[7] = 1 // Disable IRQ
PC = 0x00000008

Software Interrupt

The Process Response to an Exception
(Cont.)

R14_abt = PC+4
SPSR_abt = CPSR
CPSR[4:0] = 0b10010 //Abort Mode
CPSR[5] = 0
CPSR[6] unchanged
CPSR[7] = 1 // Disable IRQ
PC = 0x0000018

Interrupt Request

R14_abt = PC + 8
SPSR_abt = CPSR
CPSR[4:0] = 0b10111 //Abort Mode
CPSR[5] = 0 // ARM state
CPSR[6] unchanged
CPSR[7] = 1 // Disable IRQ
PC = 0x00000010

Data Abort

The Process Response to an Exception
(Cont.)

R14_abt = PC + 4
SPSR_abt = CPSR
CPSR[4:0] = 0b10010 //IRQ Mode
CPSR[5] = 0 // ARM state
CPSR[6] = 1 //Disable FIQ
CPSR[7] = 1 // Disable IRQ
PC = 0x0000001C

Fast Interrupt Request

Returning From an Exception Handler
o Returning from an exception handler
n Depend on whether the exception handler uses

the stack operations or not

o Generally, to return execution to the original
execution place
n Restore the CPSR from spsr_mode
n Restore the program counter using the return

address stored in lr_mode

Returning From an Exception Handler :
Simple Return
o If not require the destination mode registers

to be restored from the stack
n Above two operations can be carried out by a

data processing instruction with
o The S flag (bit 20) set

n Update the CPSR flags when executing the data processing
instruction

n SUBS, MOVS
o The program counter as the destination register

n Example: MOVS pc, lr //pc = lr

Returning From an Exception Handler :
Complex Return
o If an exception handler entry code uses the stack

to store registers
n Must be preserved while handling the exception

o To return from such an exception handler, the
stored register must be restored from the stack
n Return by a load multiple instruction with ^ qualifier
n For example: LDMFD sp!, {r0-r12,pc}^

Returning From an Exception Handler
o Note, do not need to return from the reset

handler
n The reset handler executes your main code directly

o The actual location when an exception is taken
depends on the exception type
n The return address may not necessarily be the next

instruction pointed to by the pc

Returning from SWI and Undefined
Instruction Handlers
o SWI and undefined instruction exceptions are

generated by the instruction itself
n lr_mode = pc + 4 //next instruction

o Restoring the program counter
n If not using stack: MOVS pc, lr //pc = lr
n If using stack to store the return address

STMFD sp!, {reglist, lr} //when entering the handler
…
LDMFD sp!, {reglist, pc}^ //when leaving the handler

Returning from FIQ and IRQ
o FIQ and IRQ are generated only after the

execution of an instruction
n The program counter has been updated

n lr_mode = PC + 4
o Point to one instruction beyond the end of the

instruction in which the exception occurred

PC
FIQ or IRQ occurs

PC+4

Returning from FIQ and IRQ (Cont.)
o Restoring the program counter
n If not using stack: SUBS pc, lr, #4 //pc = lr-4

n If using stack to store the return address
SUB lr, lr, #4 //when entering the handler
STMFD sp!, {reglist, lr}
…
LDMFD sp!, {reglist, pc}^ //when leaving the handler

Return from Prefetch Abort
o If the processor supports MMU (Memory Management Unit)

n The exception handler loads the unmapped instruction into physical
memory

n Then, uses the MMU to map the virtual memory location into the
physical one.

o After that, the handler must return to retry the instruction that
caused the exception.

o However, the lr_ABT points to the instruction at the address
following the one that caused the abort exception

Return from Prefetch Abort (Cont.)
o So the address to be restored is at lr_ABT – 4
o Thus, with simple return

SUBS pc,lr,#4
o In contrast, with complex return

SUB lr,lr,#4 ;handler entry code
STMFD sp!,{reglist,lr}
;...
LDMFD sp!,{reglist,pc}^ ; handler exit code

Return from Data Abort
o lr_ABT points two instructions beyond the

instruction that caused the abort
n Since when a load or store instruction tries to

access memory, the program counter has been
updated.

n Thus, the instruction caused the data abort
exception is at lr_ABT – 8

o So the address to be restored is at lr_ABT – 8

Return from Data Abort (Cont.)
o So the address to be restored is at lr_ABT – 8
o Thus, with simple return

SUBS pc,lr,#8
o In contrast, with complex return

SUB lr,lr,#8 ;handler entry code
STMFD sp!,{reglist,lr}
;...
LDMFD sp!,{reglist,pc}^ ; handler exit code

Summary

o NOTES
1. PC is the address of the BL/SWI/Undefined Instruction fetch which had the prefetch

abort.
2. PC is the address of the instruction which did not get executed since the FIQ or IRQ

took priority.
3. PC is the address of the Load or Store instruction which generated the data abort.
4. The value saved in R14_svc upon reset is unpredictable.

Install an Exception Handler
o Any new exception handler must be installed in the

vector table

o Exception handlers can be installed in two ways
n Branch instruction: simple but have one limitation

o Branch instruction only has a range of 32 MB relative to the pc

n Load pc instruction: set pc by
o Load instruction to load the handler address into the program

counter

Install an Exception Handler: Method
1
Vector_Init_Block

b Reset_Addr
b Undefined_Addr
b SWI_Addr
b Prefetch_Addr
b Abort_Addr
NOP ;Reserved vector
b IRQ_Addr
b FIQ_Addr

Reset_Addr …
Undefined_Addr …
SWI_Addr …
Prefetch_Addr …
Abort_Addr …
IRQ_Addr …
FIQ_Addr …

Install an Exception Handler: Method
2

Vector_Init_Block
LDR PC, Reset_Addr
LDR PC, Undefined_Addr
LDR PC, SWI_Addr
LDR PC, Prefetch_Addr
LDR PC, Abort_Addr
NOP ;Reserved vector
LDR PC, IRQ_Addr
LDR PC, FIQ_Addr

Reset_Addr DCD Start_Boot
Undefined_Addr DCD Undefined_Handler
SWI_Addr DCD SWI_Handler
Prefetch_Addr DCD Prefetch_Handler
Abort_Addr DCD Abort_Handler

DCD 0 ;Reserved vector
IRQ_Addr DCD IRQ_Handler
FIQ_Addr DCD FIQ_Handler

DCD
o Allocates one or more words of memory, aligned on 4-

byte boundaries, and defines the initial runtime
contents of the memory

o Examples
data1 DCD 1,5,20 ; defines 3 words containing

; decimal values 1, 5, and 20
data2 DCD mem06 + 4 ; defines 1 word containing 4 +

; the address of the label mem06

SWI Handlers
o Top-Level SWI Handlers
o SWI Routine in Assembly Language
o SWI Routine in C
o How to Pass Values in and out of a SWI

Routine
o Calling SWIs from an Application

SWI Handlers
o When the SWI handler is entered, it must know

which SWI is being called
n The SWI number is stored in bits 0-23 of the instruction
n Or passed in an integer register, usually one of r0-r3

Top-Level SWI Handlers
o Because SVC only has its own LR_svc and SP_svc

n Save all other r0~r12 to the stack
o To calculate the SWI number

n Calculate the instruction address causing the SWI
o Since lr_SVC holds the address of the instruction that follows the

SWI instruction, thus
o LDR r0, [lr, #-4] ; derive the SWI instruction’s address

n The SWI number is extracted by clearing the top eight bits
of the opcode:
o BIC r0, r0, #0xFF000000

Top-Level SWI Handlers (Cont.)
SWI_Handler ; top-level handler

STMFD sp!,{r0-r12,lr} ; Store registers.
LDR r0,[lr,#-4] ; Calculate address of SWI instruction

; and load it into r0.
BIC r0,r0,#0xff000000 ; Mask off top 8 bits of instruction

;to give SWI number.
;
; Use value in r0 to determine which SWI routine to execute.
;
LDMFD sp!, {r0-r12,pc}^ ; Restore registers and return.
END ; Mark end of this file.

Top-Level SWI Handlers (Cont.)
o Above program is called top-level handler
n Must always be written in ARM assembly

language

o However, the routines to handle each SWI can
be written in either assembly language or in C

SWI Routine in Assembly Language
o If the routines to handle each SWI in written

in Assembly Language
n The easiest way is using a jump table

o In the top-level handler, the r0 contains the
SWI number

o Thus, the following code can be inserted into
the top-level handler, i.e., SWI_Handler
n Following on from the BIC instruction

SWI Routine in Assembly Language
(Cont.)

CMP r0, #MaxSWI ; Range check
LDRLS pc, [pc,r0,LSL #2] ; LDRLS: LS (cond. exec.) lower or the same

; PC = PC + r0 * 4, (LSL: logical shift left)
B SWIOutOfRange

SWIJumpTable
DCD SWInum0 ; stores the address of a routine
DCD SWInum1 ; stores the address of a routine
… ; DCD for each of other SWI routines

SWInum0 ; SWI number 0 code
…..
B EndofSWI

SWInum1 ; SWI number 1 code
…..
B EndofSWI

; Rest of SWI handling code
EndofSWI

; Return execution to top level SWI handler so as to restore
; registers and return to program.

SWI Routine in C
o If the routines to handle each SWI in written in C
o The top-level handler uses a BL (branch and link)

instruction to jump to the appropriate C function
n BL C_SWI_Handler ;call C routine to handle

o Then, we must invoke the C routine that handles
respective SWI
n But, how to pass the SWI number, which is now stored in

r0, to the C function?

ARM Procedure Call Convention
o Use registers r0-r3 to pass parameter values into

routines
n Correspond to the first to fourth arguments in the C

routines
o Remaining parameters are allocated to the stack in

order
o A function can return

n A one-word integer value in r0
n A two to four-word integer value in r0-r1, r0-r2 or r0-r3.

SWI Routine in C (Cont.)
o Thus, the C handler is like the following
void C_SWI_handler (unsigned number)
{

switch (number)
{

case 0 : /* SWI number 0 code */
break;

case 1 : /* SWI number 1 code */
break;

:
:
default : /* Unknown SWI - report error */

}
}

SWI Routine in C (Cont.)
o However, how to pass more parameters ?
n Make use of the stack (supervisor stack)

o The top-level SWI handler can pass the stack
pointer value (i.e. r13) to the SWI C routine
as the, for example, second parameter, i.e., r1
n sp is pointing to the supervisor stack,

MOV r1, sp
BL C_SWI_Handler

SWI Routine in C (Cont.)
o Then, the C_SWI_Handler can access it
void C_SWI_handler (unsigned number, unsigned *reg)
{

value_in_reg_0 = reg [0]; //can read from them:
value_in_reg_1 = reg [1];
value_in_reg_2 = reg [2];
value_in_reg_3 = reg [3];

reg [0] = updated_value_0; // write back to them
reg [1] = updated_value_1;
reg [2] = updated_value_2;
reg [3] = updated_value_3;

}

How to Pass Values in and out of a
SWI Routine
o How the main program code passes values in

and out of a SWI routine?
o Note that
n The main program code is executing in the User

mode
n The SWI handler and their routines are in the

Supervisor mode
n However, both mode has the same r0~r12 registers

How to Pass Values in and out of a
SWI Routine (Cont.)
o Thus, the application code and SWI routine

can communicate by r0~r12 registers

Calling SWIs from an Application
o The application code can call a SWI from

assembly language or C/C++
o In assembly language
n Set up any required register value
n Then issue the relevant SWI
n For example:

MOV r0, #65 ; load r0 with the value 65
SWI 0x0 ; Call SWI 0x0 with parameter value in r0

Calling SWIs from an Application
(Cont.)
o From C/C++, declare the SWI as an __SWI

function, and call it.
o Example:

__swi(0) void my_swi(int);
.
.
my_swi(65);

Calling SWIs from an Application
(Cont.)
o __SWI function allow a SWI to compiled

inline
n Without additional overhead

n However, it must have the restrictions that
o Any arguments are passed in r0-r3 only
o Any results are returned in r0-r3 only

Example
#include <stdio.h>
#include "swi.h"

int main(void)
{

int result1, result2;
struct four_results res_3;

Install_Handler((unsigned) SWI_Handler, swi_vec);
printf("result1 = multiply_two(2,4) = %d\n", result1 =
multiply_two(2,4));
printf("add_two(result1, result2) = %d\n", add_two(result1,
result2));
return 0;

}

Calling SWIs from an Application
(Cont.)
o swi.h

__swi(0) int multiply_two(int, int);
__swi(1) int add_two(int, int);

Interrupt Handlers
o The ARM processor has two levels of external

interrupt
n FIQ and IRQ

o FIQs have higher priority than IRQs because
n FIQs are serviced first when multiple interrupts

occur.
n Servicing a FIQ causes IRQs to be disabled until

after the FIQ handler has re-enabled them
o By restoring the CPSR from the SPSR at the end of the

handler

Interrupt Handlers (Cont.)
o How the FIQ performs faster than IRQ
n FIQ vector is the last entry in the vector table

o FIQ handler can be placed directly at the vector
location and run sequentially from that address
n Removes the need for a branch and its associated delays
n If the system has a cache, the vector table and FIQ handler

may all be locked down in one block.

n FIQ has more banked registers than IRQ
o r8_FIQ~r12_FIQ registers
o Have less time in the register save/restore

IRQ Handler
IRQ_Handler: ; top-level handler

STMFD sp!,{r0-r12,lr} ; Store registers.
BL ISR_IRQ

LDMFD sp!, {r0-r12,pc} ; Restore registers and return
SUBS pc, lr, #4
END ; Mark end of this file.

Sansung S3C4510B Interrupt
Controller
o The ISR_IRQ depends on which interrupt

controller used
o For example, in Sansung S3C4510B
n The interrupt controller has a total 21 interrupt

sources
n Each interrupt can be categorized as either IRQ or

FIQ
n Each interrupt has an interrupt pending bit

S3C4510B Interrupt Sources

Sansung S3C4510B Interrupt
Controller (Cont.)
o Five special registers used to control the interrupt generation

and handling
n Interrupt mode register

o Defines the interrupt mode, IRQ or FIQ, for each interrupt source.
n Interrupt pending register

o Indicates that an interrupt request is pending
n Interrupt mask register

o The current interrupt is disabled if the corresponding mask bit is "1“
o If the global mask bit (bit 21) is set to "1", no interrupts are serviced.

n Interrupt priority registers
o Determine the interrupt priority

n Interrupt offset register
o Determine the highest priority among the pending interrupts.

Interrupt Mode Register (INTMOD)
o Bit settings in the INTMOD specify if an interrupt is

to be serviced as a FIQ or IRQ
o Each of the 21 bits corresponds to an interrupt

source
n 1: FIQ
n 0: IRQ

Interrupt Pending Register (INTPND)
o Contains interrupt pending bits for each interrupt

source
o Each of the 21 bits corresponds to an interrupt source

n When an interrupt request is generated, its pending bit is
set to 1

n The service routine must then clear the pending condition
by writing a 1 to the appropriate pending bit at start.

Interrupt Mask Register (INTMSK)
o Contains interrupt mask bits for each interrupt

source
o Each of the 21 bits in the interrupt mask

register corresponds to an interrupt source.
n If bit is 1, the interrupt is not serviced by the CPU

when the corresponding interrupt is generated
n If the mask bit is 0, the interrupt is serviced upon

request

Interrupt Mask Register (INTMSK)
(Cont.)
o If global mask bit (bit 21) is 1, no interrupts

are serviced
n However, the source pending bit is set whenever

the interrupt is generated
n After the global mask bit is cleared, the interrupt

is serviced.

Interrupt Priority Registers
(INTPRI0–INTPRI5)
o Contain information about which interrupt source is

assigned to the pre-defined interrupt priority
o Each INTPRIn register value determines the priority

of the corresponding interrupt source
n The lowest priority value is priority 0, and the highest

priority value is priority 20
n The index value of each interrupt source is written to one

of the above 21 positions
o See the next slide

Interrupt Priority Registers
(INTPRI0–INTPRI5) (Cont.)

Interrupt Offset Register (INTOFFSET)
o Contains the interrupt offset address of the

interrupt
n Hold the highest priority among the pending

interrupts
n The content of the interrupt offset address is "bit

position value of the interrupt source << 2“
n If all interrupt pending bits are "0" when you read

this register, the return value is "0x00000054“

Interrupt Offset Register (Cont.)
o This register is valid only under the IRQ mode

or FIQ mode in the ARM7TDMI.
n In the interrupt service routine, you may change

CPU mode to perform other works

n Thus, read this register before you changing the
CPU mode from IRQ or FIQ to other modes.
o IRQNumber = INTOFFSET >> 2

Interrupt Offset Register (Cont.)
o INTOSET_FIQ/INTOSET_IRQ register can

also be used to get the highest priority
interrupt
n INTOSET_FIQ: FIQ interrupt offset register

n INTOSET_IRQ: IRQ interrupt offset register

IRQ Handler (Cont.)

FIQ Handler
FIQ_Handler

STMFD sp!, {r0-r7, lr}
BL ISR_FiqHandler
LDMFD sp!, {r0-r7, lr}
SUBS pc, lr, #4

o The same as IRQ Handler
n Except the number of saved unbanked registers

Reset Handler
o The operation depend on the system for which the

software is being developed
o For example

n Initialize stacks and registers.
n Initialize the memory system, if using an MMU.
n Initialize any critical I/O devices.
n Enable interrupts.
n Change processor mode and/or state.
n Initialize variables required by C and call the main

application

Undefined Instruction Handlers
o Instructions that are not recognized by the

processor are offered to any coprocessors
n If the instruction remains unrecognized, an

Undefined Instruction exception is generated
o The instruction is intended for a coprocessor, but that

the relevant coprocessor is not attached to the system.

n However, a software emulator for such a
coprocessor might be available.

Software Emulator
o Attach itself to the Undefined Instruction vector and

store the old contents.
o Examine the undefined instruction to see if it should

be emulated.
n If bits 27 to 24 = b1110 or b110x,

o The instruction is a coprocessor instruction
n Bits 8-11: CP# (Co-Process Number)

o Specify which coprocessor is being called upon

o If not, the emulator passes the exception onto the
original handler or the next emulator in the chain

ARM Instruction Set Format

Prefetch Abort
o If the system has no MMU

n The Prefetch Abort handler can simply report the error
and quit

o Otherwise
n The address that caused the abort must be restored into

physical memory
o In both cases, the handler must return to the

instruction causing the prefetch abort exception
n SUBS pc, lr, #4

Data Abort Handler
o If the system has no MMU

n The Data Abort handler can simply report the error and
quit

o Otherwise
n The handler should deal with the virtual memory fault

o In both cases, the handler must return to the
instruction causing the prefetch abort exception
n SUBS pc, lr, #8

Data Abort Handler
o Three types of instruction can cause this abort

n Single Register Load or Store (LDR or STR)

n Swap (SWP)

n Load Multiple or Store Multiple (LDM or STM)

Reference
o Sansung S3C4510B User’s Manual

n Chapter 13 Interrupt Controller
n http://www.samsung.com/Products/Semiconductor/Syste

mLSI/Networks/PersonalNTASSP/CommunicationProces
sor/S3C4510B/S3C4510B.htm

o Sansung S3C4510B application notes
n http://www.samsung.com/Products/Semiconductor/Syste

mLSI/Networks/PersonalNTASSP/CommunicationProces
sor/S3C4510B/S3C4510B.htm

o ARM® Developer Suite: Developer Guide
n Chapter 5: Handing Processor Exceptions

http://www.samsung.com/Products/Semiconductor/Syste
http://www.samsung.com/Products/Semiconductor/Syste

